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cross-section of the specimen. The approach given may be used for any type of particle; we consider

Part 1 is concerned with elucidating various results for a specimen of general cross-section.
Having obtained the Boltzmann equation for any type of internal scattering mechanism, we deal
with the boundary conditions relating to the scatter of particles by the specimen surfaces. Employing
a very general form for these, a uniqueness theorem is proved for the solution of our problem.
Certain general symmetry properties of the solution are discussed, and transport considerations
are dealt with. Finally, a frequently used approximate treatment of boundary scatter is placed on

Part 2 is concerned with a detailed evaluation of the solution of the Boltzmann equation and
boundary conditions for the flow between parallel plates. Previous treatments of this problem have
assumed a ‘relaxation-time’ approximation for representing the effect of interparticle collisions in
the medium, together with certain simplified boundary conditions. These two assumptions effec-
tively remove the ‘coupling’ which should exist between the equations relating to the different
particle modes, and thus greatly simplify the solution of the problem. We retain the complete
Boltzmann equation, which is equivalent to a set of coupled first-order linear differential equations,
and find its general solution containing various undetermined constants, which are then calculated
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138 S. SIMONS ON THE

via our general boundary conditions. This general solution is obtained as the sum of a complemen-
tary function and a particular integral. The former involves the eigenfunctions and eigenvalues of a
modified collision operator, while the form taken by the latter depends on whether or not wave
number (equivalent to momentum) is conserved in interparticle collisions. If wave number is not
conserved, the particular integral is the solution of the Boltzmann equation for an infinite medium.
The complementary function is then a combination of terms, varying exponentially with respect to
distance, which correspond to a decrease in the neighbourhood of the boundary; these are qualita-
tively of the same form as when a relaxation time is employed. On the other hand, if wave number
is conserved, the equation for an infinite medium possesses no solution and it is then found that the
particular integral corresponds to a quadratic variation with respect to distance between the
boundary surfaces. When the distance between these surfaces is sufficiently greater than the collision
mean free path this quadratic variation is shown to differ from the usual ‘viscous flow’ theory by
terms which are of importance only in the neighbourhood of the boundary; these, together with the
complementary function, give the boundary corrections to the usual theory. The combination of
quadratic particular integral and exponential complementary function is shown to give rise to the
possibility of a ‘ Knudsen minimum’, which has so far been observed both in gases and in phonon
flow in liquid helium. Throughout the paper a general anisotropic medium is assumed and we thus
incidentally generalize the theory of viscous flow, previously considered only for an isotropic medium
in the case of gas molecules. Finally, a consideration is given of the situation when a small pro-
portion of collisions 7ot conserving wave number occurs together with a very large proportion of
collisions that do conserve it; this is relevant to the effect of impurities and other momentum-
destroying mechanisms at low temperatures. The result for general separation of the boundaries is
obtained, and it is found that if this is large enough, the total particle flow is similar to that occurring
in the absence of wave number conserving processes. However, the flow variation on leaving the
boundary is now accurately characterized by a relaxation length which is the geometrical mean
of the relaxation lengths for the two types of collision process acting separately.

INTRODUCTION

The Boltzmann equation arises naturally as the equation governing the flow of particles
through a medium in which they can undergo interparticle collisions, when they are subject
to some external driving field or combination of fields. Typical situations where the equation
is used are:

- (a) the flow of gas molecules under the influence of a pressure and temperature gradient
(Chapman & Cowling 1952);

(b) the flow of electrons in a conductor under the influence of a temperature gradient,
together with an electric field (Wilson 1954) ;

(¢c) the flow of phonons in a conductor or insulator under the influence of a temperature
gradient (Peierls 1955; Khalatnikov 1956).

As we shall be considering later a general treatment to cover these three cases, it is con-
venient to mention at this point certain relevant differences existing between them.

(1) Statistics: molecules, electrons and phonons obey respectively Maxwell, Fermi—
Dirac and Bose-Einstein statistics.

(2) For the purpose of a Boltzmann equation the generalized co-ordinates used for a gas
molecule are its position, and momentum or velocity, since in terms of these, volume in phase
space is conserved during the motion. For electrons and phonons, on the other hand, it is
necessary to use position and wave number in order that volume in the corresponding phase
space should always be conserved. Velocity instead of wave number is only permissible if the
energy is a quadratic function of the latter; this will not be the case in general for electrons
in a periodic potential—see appendix D.
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(3) The flow of gas molecules (through a vacuum) and of phonons through liquid helium
is with respect to an isotropic medium, and thus the intrinsic properties of the relevant
particles—velocity for a given momentum, collision probabilities, etc., are independent of
the direction of motion of the particles. However, in the case of electron and phonon
propagation in crystals, these intrinsic properties must possess anisotropy corresponding to
that of the crystal lattice.

(4) The types of collision that the particles can undergo are of varied character in as far as
the quantities conserved in them are concerned. Thus, gas molecules are subject only to
intermolecular collisions in which number, energy and momentum are conserved. In a
non-conducting medium, phonons can undergo phonon-phonon collisions in which energy
and wave number are conserved for a continuum, such as liquid helium; these are termed
‘normal’ or N-processes. In a crystal lattice in addition to these, ‘ Umklapp’, or U-processes
can occur in which energy alone is conserved. In a conducting crystal, electrons and phonons
can interact via collisions in which the total energy and number of electrons are conserved
for U-processes, and also the total wave number for N-processes. Electrons can further
undergo electron-electron collisions of the N or U type. If impurities or defects exist in the
medium, then either electrons or phonons can interact with these, yielding collisions in
which number and energy are conserved (Klemens 1955).

(5) For a specimen with width much greater than the interparticle collision mean free
path, the type of particle flow depends on whether or not wave number (equivalent to
momentum) is conserved in collisions. Ifitisnotconserved, then the particle flow is constant
across the width of the specimen, at more than a few mean free paths from the specimen
boundaries. On the other hand, ifitis conserved, as with gas flow, then a parabolic variation
of particle flow across the width of the specimen occurs at more than a short distance from the
boundary. The reason for this difference will become clarified in this paper.

Weshall now review briefly the main considerations in setting up the Boltzmann equation,
in as far as these are relevant to explaining the position of the present paper relative to
previous work on the Boltzmann equation. We first note that for a bounded medium it is
necessary that the distribution function for the various particles should satisfy certain (so
far unspecified) boundary conditions at the specimen surface as well as the Boltzmann
equation inside the medium. The latter is obtained by the requirement that, for equilibrium
flow, the rate at which particles are undergoing collision transitions into some state at some
point in space should equal the rate at which they are leaving that state due to their con-
vective movement under the action of the applied fields.{ For a bounded medium with a
driving field applied along its length, this gives rise to the following three terms (as will be
seenin §1-1):

(a) a collision term, involving, in general, an integration over a non-linear algebraic
combination of the occupation numbers f of the possible particles taking part in the relevant

collision process;

(b) a term involving the divergence of f over the cross-section;

(¢) a convection term corresponding to the applied driving field and 1nv01v1ng the
differential coefficient of f with respect to the wave number, temperature, etc. The resulting

1 An alternative approach to the Boltzmann equation in a particular case, via the relevant density

matrix, has been given by Kohn & Luttinger (1957).
17-2
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Boltzmann equation may be simplified in different ways, depending on the relative magni-
tude of the following three characteristic lengths: (1) the collision mean free path, (2) a mean
specimen width, (3) the distance along the specimen in which the particle equilibrium
distribution radically alters owing to the external driving field. If (1) is much greater than
(2), the collision term (a) vanishes from the Boltzmann equation; if (2) is much greater
than (1), the above spatial variation term () vanishes from the equation; if (3) is much
greater than (1) or (2), the collision term (a) becomes linear in the displacement from some
equilibrium distribution, and the convective term (¢) involves only the differential coef-
ficient of an equilibrium distribution occupation number—which is known. Previous work
on the Boltzmann equation may be conveniently divided up on the basis of which of the
lengths (1), (2) and (3) were considered to be large enough for the corresponding simplifica-
tion to operate, also on the basis of whether wave number is conserved in collisions, case (1),
or is not, case (ii). There are four situations to consider.

(A) The problem most commonly dealt with is where the lengths (2) and (3) are both
much larger than (1). This gives rise to the linear Boltzmann equation for an infinite
medium, which in case (i) has been dealt with for gas flow by Enskog (1922) and others
(Hirschfelder, Curtiss & Bird 1954) using a variational approach and the introduction of a
viscosity. In case (ii), variational techniques have been used by Kohler (1948, 19494) and
Sondheimer (1950) for electron conduction, and by Leibfried & Schlémann (1954) for phonons
undergoing U-processes. Numerical methods have also been used by Rhodes (1950).

(B) The situation when length (2) is much greater than (1) and (3) has been considered
in case (i) for gas flow by Burnett (1935), who used a perturbation approach giving first-
order corrections to the results obtained by Enskog (1922). A different approach in this
region has been given by Grad (1949) who employed moment equations, derived from the
Boltzmann equation.

(G) Atthe other extreme, we have lengths (1) and (3) both much greater thanlength (2).
In this case, the particles pass freely between boundaries of the specimen and the theory may
be readily calculated (Devienne 1958). Pioneering work in this region was performed for
gas flow by Knudsen (1911); the situation also occurs for phonon flow in solid dielectrics
(Casimir 1938) and in liquid helium at sufficiently low temperatures (Whitworth 1958).

(D) The situation in which we are principally interested, and with which this paper will
be dealing, is when length (3) is much greater than (1) and (2). We see from our earlier
comments that this will give rise to a linearized Boltzmann equation retaining the three
terms mentioned there. Treatments of this region (intermediate between (A) and (C)) have
been given previously via the introduction of a ‘relaxation-time’ approximation, together
with simplified boundary conditions to be satisfied at the specimen’s surface. This ‘relaxa-
tion-time’ approximation consists of assuming that the collision term (@) in the Boltzmann
equation is proportional to the displacement of the occupation number from the equilibrium
distribution for the wave number under consideration. As boundary conditions itis assumed
that a certain definite fraction of those particles incident on the surface are diffusely scattered
and the remainder specularly reflected; the correct boundary conditions would give a
definite probability for a particle incident in any state of being scattered into any other state.
As will become clear in this paper, these two approximations taken together effectively
remove the ‘coupling’ that should exist between the Boltzmann equation for different wave
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numbers, in the same way as the employment of a diagonal matrix will remove the ‘ coupling’
between a set of linear simultaneous algebraic equations, reducing them to so many separate
equations. In this way, the resulting Boltzmann equation and boundary condition for any
wave number involves only that wave number, and may be readily solved. This treatment has
been given by Fuchs (1938) for case (ii) in electron conduction, and has since been used
exclusively in this work (reviewed by Sondheimer 1952). Similarly in case (i) for gas flow,
a ‘relaxation-time’ approach has been used by Gross, Jackson & Ziering (1957) under these
circumstances. Now, to what extent is the use of a ‘relaxation-time’ approximation justi-
fiable ? It has been employed for the situation (A) both in cases (i) and (ii), and here we may
distinguish between two classes of use. The first class covers those situations where it is known
that the assumption of a relaxation time is only an approximation. The second class is
exemplified by impurity scatter of electrons in an infinite isotropic medium (Wilson 1954 ),
where it may be rigorously shown that the true solution of the Boltzmann equation possesses
the same directional variation as that obtained by making a ‘relaxation-time’ approxima-
tion. However, this result depends on the fact that the convective term in the Boltzmann
equation transforms as a particular representation of the complete rotational group, while
the collision operator is invariant under this group. Thus the validity of a relaxation time for
this situation does not imply that it will be valid for a bounded medium where there exists
an additional term in the Boltzmann equation; a further discussion of the error involved
here has been given by Ham & Mattis (1955). We may therefore conclude that a relaxation-
time approach is never strictly correct for a bounded medium.

In case (i) for gas flow, the complete Boltzmann equation has been considered by Wang-
Chang & Uhlenbeck (1953, 1954) and by Gross & Ziering (1958). However, they are
interested only in obtaining numerical results in particular cases, with certain orders of
approximation, and they employ the simplified boundary conditions mentioned above;
their work is, of course, only for an isotropic medium and does not deal with case (ii). We are
interested in dealing with the complete linear Boltzmann equation and boundary conditions
for a bounded medium without making any approximations, and in as general a manner as
possible. In part 1 we consider the equation in detail for a medium of general cross-section,
while in part 2 we obtain specific results for the flow between two plane parallel boundaries.
The detailed arrangement is as follows. In §1-1 we obtain the Boltzmann equations for the
flow of electrons, phonons and gas molecules, and show that, subject to a certain condition in
the case of electron flow, they can all be written in the same form. In §1-2 we deal with the
most general type of boundary conditions, assuming that there is no exchange of energy with
the specimen walls. We then proceed to show in § 1-3 that the Boltzmann equation, together
with these boundary conditions and certain auxiliary conditions, have a unique solution,
while in §1-4 we discuss certain symmetry properties of this solution. General transport
considerations, both of quantities conserved in collisions and also of entropy, are dealt with
in §1-5, and in §1-6 we put on a firmer mathematical basis an approximate method fre-
quently used for boundary scatter, whereby a relaxation time for the particle to traverse the
specimen is estimated, and then added reciprocally to the interparticle collision relaxation
time in order to estimate the total relaxation time (Klemens 1956).

We consider the Boltzmann equation and boundary conditions for flow between two
plane parallel surfaces in §2-1, and show that the former may be looked upon as a set of
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coupled linear first-order differential equations, whose solution involves a complementary
function and particular integral. The former is considered in §2-2, and we show how it may
be obtained in terms of the eigenvalues and generalized eigenvectors of the matrix coupling
the differential equations; various relevant properties of this matrix are proved in ap-
pendix B. In §2-3 we deal with the particular integral, showing that it is spatially constant
if wave number is nof conserved in interparticle collisions and that it possesses a parabolic
spatial variation if wave number is conserved. The problem of fitting the boundary condi-
tions is tackled in § 24, while in §2-5 we consider the form taken by our results for the cases
of physical interest. The general question of transport is dealt with in §2+6, and in §2-7 we
consider various special cases of our results, showing, among other things, how our solution
in the case of wave-number conservation reduces to the usual ‘viscous’ result when the
boundary separation is sufficiently greater than the collision mean free path. Finally, in
§2-8 we deal with the situation when a small number of collisions 7ot conserving momentum
occurs together with a large number of collisions that do conserve it. By means of perturba-
tion theory we obtain the effect of the former, and consider the form taken by the general
result for various boundary separations.

Applications of the present theory to a detailed consideration of the Knudsen inter-
mediate region, electron conduction in thin metallic films and to Couette flow in gases
will be given in a subsequent paper. The theory of Part 2 will also be extended to cover
magnetic fields and specimens of arbitrary cross-section. It will then remain to provide a
treatment in the general case when the non-linear Boltzmann equation must be employed.

PART 1. PARTICLE FLOW IN A SPECIMEN OF GENERAL CROSS-SECTION

1-1. Boltzmann equation for a medium of finite cross-section

We shall consider the time-independent Boltzmann equation, first for electrons and
phonons, and then for gas molecules, when flow occurs along a solid specimen (for electrons
and phonons) or a tube (for gas molecules) of infinite length, but finite cross-section, under
the action of some ‘driving force’ (temperature gradient, electric field, etc.) parallel to the
tube axis. In the case of electrons we shall omit any consideration of a magnetic field, the
inclusion of which would introduce certain difficulties which we do not propose to deal with
in this paper. Asshown in Wilson (1954), the Boltzmann equation for electrons and phonons

then takes the form Af)0t] . =V . Vg f+ (¢/F) £.V, f, (1-1)

where f = f(k, R) is the distribution function for particles (electrons or phonons) of wave
number k at the point R in the medium. & is the total electric field acting on the particle,
¢ and v are its charge and group velocity respectively, while df/d¢] ;1. is the rate of change of
/ due to collisions of all types; Vg and V, are gradient operators in real and wave-number
space, respectively. To simplify equation (1-1) we suppose that there exists a fictitious
temperature variation, linear along the length of the specimen (the z direction) with a
gradient equal to the applied temperature gradient,} but constant across the specimen
cross-section ;§ we then define ®(k, r) by
Sk, R) = fo(k) —w(k) D(k,r). (1-2)
1 By ‘applied temperature gradient’ we mean the difference in temperature beetwen corresponding

points in two cross-sections separated by distance d, divided by d.
§ This does not fix the absolute value of the temperature, which is considered in §1-3.
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Here f°(k) is the equilibrium distribution (Fermi-Dirac or Bose-Einstein) with tempera-
ture T corresponding to the value of z at the point considered, while w(k) = 9f°(k)/dE(k),
E(k) being the energy associated with the state k. @ will now be independent of z and is
spatially a function only of r, a two-dimensional vector specifying the position in the cross-
section of the specimen. Ifv, is the resolute of v in the z direction, this allows the first term on
the right-hand side of equation (1-1) to be written v,(9f°/07T) (d7/dz) —wv.V,®, where the
spatial derivative of w may be neglected since we assume w® < f°; for the same reason the
second term becomes (¢/%) & .V, f°. Now, & here is the total electric field acting on the
particle, consisting of the applied field &, along the z direction, together with any field &,
in the cross-sectional plane of the specimen which may be set up by the electron flow. Thus,
in general we must put & = &, + &, in the above expression, where &, satisfies the equations

div, &, = dup(r) = (¢/n2) f w(k) O(k, r) dk, (1-3a)

curl, &, = 0, (1-35)
p(r) being the total charge density of electrons and ions at r; also &, is zero at the boundaries.
Now we shall see later in §1-4 that if the anisotropy of our medium is such that the cross-
sectional plane of the specimen is a plane of symmetry, then the solution of the Boltzmann
equation obtained by omitting &, is such as to make the right-hand side of equation (1-34)
zero. This means that if such a symmetry plane is present, a self-consistent solution of the
Boltzmann equation, together with equations (1-3a) and (1-35) exists in which &, is zero.
We shall therefore assume in our future discussion the existence of such a symmetry plane,
and shall consequently omit &, from the Boltzmann equation. Of course, for phonon con-
duction in dielectric media it is unnecessary to impose any such restriction on the anisotropy.
Finally, we consider the term 9f/df].,; in equation (1-1), the form of which depends on
the type of collision process. Thus for simple scattering of a particle by an impurity from
state k to K’ with probability L(k, k), we have

o 108, = [L(k, ') (@) dK,

while for a general n-particle process this generalizes to

U 08]con, = L[D]- (1-4)
Here [®] is a linear combination of the n®d’s corresponding to the interacting particles and
Lis a (negative) collision operator which multiplies [@] by a term involving properties of the
medium and the 7 interacting particles, before integrating over all values of the wave
numbers of the n—1 particles with which the one under consideration interacts. }
The above considerations yield our Boltzmann equation in the form

wv-V. O+ L[] = U, (1-5)

where U(K) = v,(9f°/0T) (dT/dz) + (e/h) & .V fO. (1-6)

We shall now deal with the flow through a tube of gas molecules of one type, for which the
general Boltzmann equation is given by Hirschfelder ez al. (1954) in the form

aj‘/at]coll. = V'VRf"_mwlF 'ij; (1.7)

1 If more than one type of collision occurs, for example, electrons with phonons and impurities, then the
theory remains unaltered with L[®] replaced by XL [®], where s specifies the collision type.
s


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

144 S. SIMONS ON THE

where f = f(v,R) is the distribution function for molecules of velocity v at the point R;
m is the molecular mass and F is the (velocity-independent) force acting on it. Usually F is
zero, but in the case of ion motion under the action of an electric field & in the z direction,
F = ¢&, where ¢ is the ion charge; our earlier remarks show that no electric field com-
ponents are set up in the cross-sectional plane. To simplify equation (1-7) we proceed in a
manner similar to that used for electrons and phonons and suppose that there exists a
fictitious temperature and pressure gradient along the z direction equal to the respective
applied gradients. We then define ®’'(v, r) by

SV, R) = fO(v) —uw'(v) ¥(v, 1), (1-8)
where fO(v) = ny(2mm/kT) exp (—E[kT) is the Maxwell equilibrium distribution with
temperature 7"and number n, corresponding to the value of z at the point considered. Also
w'(v) = f°/dE(v), E(V) [ = mv?] being the energy of a molecule with velocity v, and r is
a two-dimensional vector specifying position in the cross-section of the tube. Substituting
from equation (1-8) we readily see that, confining our attention to small deviations from
equilibrium, the right-hand side of equation (1-7) becomes

ared7T  df°dn, 0 ,
[(8sz+3nodz)+ A AR

1dT 1dP F , , )
[l (o)t paz ]y (1:9)
use being made of the above explicit form for f°; here P is the gas pressure.

Finally, we consider the term df/d¢] ;. in equation (1-7), where we are now only con-
cerned with two-body collisions of the molecules. For this situation df/dt] ;. may be readily
obtained (Hirschfelder et al. 1954) and shown to be capable of representation in the form
(1-4) where n now equals four (corresponding to the velocities of the two molecules before
and after collision), and where we replace ‘ wave number’ by ‘velocity’ in the definition of L.
Thus we obtain our Boltzmann equation in the form

wv. V. Q' +L[D] = U'(v), (1-10)
where U’(v) is given by the square bracket in equation (1-9). In order to continue our
development using a single equation to represent the behaviour of molecules, electrons and
phonons, it is desirable to write equation (1-10) in the form (1-5), which we do by defining
the wave number k for molecules by k — mv/A, (1-11)

and by specifying the motion of a molecule with k rather than v. In this way equation (1:10)
becomes equation (1-5) on putting
w' (fk/m) = w(k), U'(fik/m) = U(k) and @ (fk/m,r) = O(K,r).

This definition (1-11), leading to the identity of the Boltzmann equation for molecules on the
one hand and phonons and electrons on the other, shows that as far as deductions from this
equation are concerned, conservation of momentum and wave number will lead to the same
results. We shall see in Part 2 that such conservation leads to the possibility of ‘viscous flow”,
and this result, suitably interpreted, will apply to electrons and phonons as well as to gas
molecules.

+ To provide a treatment identical with that given previously for phonons and electrons, we define
(1/873) f(v, R)dv dR as the number of molecules in the range dvdR.
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A slightly different way of writing the Boltzmann equation (1-5) (which will be used in
Part 2) is to suppose that k takes the set of 2.4 discrete values k, (—4" < p < 44 except
£ = 0) rather than to suppose it to be a continuous variable.; We then consider any function
&(Kk) to be represented by g,, and by use of a summation instead of an integration we can put
L[®] = 3L, P, for the collision integral relating to k,, where the summation is taken here

q

over all values of ¢; that is, —A4" < ¢ < +.#. This gives the Boltzmann equation (1-5) in
the form 0V, -V, ®By(1) + IL,yy @ (x) = Uy, (1-12)

With this notation, the principle of microscopic reversibility takes the form L, = L ,; that
is, the matrix L, is symmetric. We also have

SL,AFA, = | A*L[A]dk
bq

for any complex A, where A* is the complex conjugate. It may be shown that owing to the
invariance of L with respect to interchange of particles taking part in the process, the latter
term may be readily transformed to «x[L[A][A]* dk (Chapman & Cowling 1952, Ziman
1956) where « is a positive numerical factor depending on the number and polariza-
tion (if this is relevant) of particles occurring in the collision process. Since L is always
negative, it follows that [A*L[A] dk is always real and less than zero, unless [A] = 0, when
it is zero. Thus L, is a negative definite matrix in the sense that %qu AF A, <0, unless A,

satisfies s qu Aq = 0, when Zqu Aqu = 0.
7 ba

Finally, we note that a relaxation-time assumption for 9f/d¢] .,y is equivalent to assuming
that Fhe rpatrix L,, is diagonal; Fhat is, that L, = (w,/7,) d,, where 7, is the relevant re-
laxation time. We shall discuss this further in §2-7.

1-2. Boundary conditions

In the previous section we obtained the Boltzmann equation governing the change of
® inside the medium. However, in order to include all the physical facts and to obtain a
unique solution, it is necessary to specify the conditions to be satisfied by ® at the boundary
of the specimen. The simple model for a surface that we shall employ is to suppose it to act
as a rigid body scattering a particle incident from some direction into some other direction,
without the possibility of any exchange of energy between the particle and the surface.
To deal with this, we shall consider that at any given point r on the surface, the wave number
is called positive for those particles approaching the surface and negative for those leaving it.
Further, the symbol k will be used in matters concerning boundary scatter to denote only
positive wave numbers. Then we shall define a probability G(k, k’, r)dk of a particle incident
at r with wave number K’ being scattered into a mode with wave number lying in the
elementaryvolume dk about k(= — k). Itfollows that, since energyis conserved in boundary
collisions, G(k,k’,r) will be non-zero only if E(k’) = E(k) and, from the definition of
probability, we have ’

f Gk, k', r) dk — 1 (1-13)

+ In fact, owing to quantization this is really a more accurate representation of the physical facts, with
N ~ 1020 to 1025 ! However, we can, of course, obtain a satisfactory representation of the situation with
A" taking more reasonable values.

18 Vor. 253. A.
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for all k" and r, where j dk implies that the integral is taken over all positive values of k.

The function G must satisfy the analogue of the general principle of microscopic reversibility
(Moliner & Simons 1957), which states that if f(k, r) were independent of k,I then the rate
of particle transitions from k’ to k would equal that from k to k’; that is

u(k', 1) G(k, k', 1) = u(k, 1) G(K', K, T), (1-14)

where u(k, r) is the magnitude of the component of v(k) normal to the surface at r. We see
from this, together with equation (1-13), that

f WK, 1) Gk, K, r) dk’ — u(K, r) f "Gk, &, 1) dK’ — u(K, T). (1-15)

Introducing now the distribution function f(k, R), we see from the definition of G(k, k', r)
that, at any point on the boundary, the former satisfies the relation

u(k,r) f(k,R) = f "Gk, K, ) u(K’, ) £(K', R) dK'. (1-16)

This yields Dk, 1) = f G(K', k,r) DK, 1) dK/, (1-17)

use being made of equations (1-14) and (1-15), since the equilibrium distribution f°(k),
depending only on £(Kk), automatically satisfies equation (1-16). The set of equations (1-17)
to be satisfied at all points r on the surface, constitute our required boundary conditions to be
imposed on the Boltzmann equation (1-5). If we use the subscript notation introduced at the
end of the last section, they take the form

d(r) = ;’qu (r) @, (r), (1-18)

where k; = k,, and G, (r) is such as to make equations (1:17) and (1-18) equivalent; the
summation is over all positive values of ¢.

In many contexts it is found sufliciently accurate to suppose the surface to be perfectly
‘white’; that is, the probability of scattering for any given incident particle is such as to
yield a constant spatial density for all modes leaving the surface. It is readily seen that for

this to be so '
Gk, K, r) =uk, r)/f u(k,r) dk. (1-19)

For the case of an isotropic medium, this is seen to be identical with the familiar Lambert’s
cosine law of diffuse scatter.

1-3. A uniqueness theorem

The interparticle and boundary collisions that we have considered in the two preceding
sections both conserve particle energy (and possibly particle number). We would therefore
expect the Boltzmann equation (1-5) together with the boundary conditions (1:17) to
determine uniquely the function ®(K,r), only if the total energy (and possibly the total
particle number) is specified independently, since the equations (1-5) and (1-17) are only
concerned with changes in fsubject to conservation of these quantities. Consideration of the

I This hypothetical situation does not, of course, correspond to a solution of the time-independent
Boltzmann equation,
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Boltzmann equation and boundary collisions alone is perhaps analogous to consideration of
equations of motion for a dynamical system in that in the latter case it is found that a unique
solution is only obtained for these equations, when the energy, which is conserved through-
out the motion, is independently specified.

Now how should the total energy be specified in our system ? We recall that when setting
up the Boltzmann equation in §1-1 we introduced a linear temperature variation along the
z direction of the specimen, equal to the applied temperature gradient; however, the
absolute value of the temperature 7" introduced was not fixed. If we now equate the total
energy of the particles inside an elemental length 0z of the specimen to the total energy of
particles whose distribution function is the equilibrium distribution f°(Kk) at temperature 7,
this will specify the total energy of our system and will simultaneously remove the arbitrari-
ness in our original definition of 7" In this way we readily obtain the auxiliary condition

f E(k) w(k) ®(k, r) dkdr = 0, (1-204)

where the k integration is over all wave numbers, and the r integration over the specimen
cross-section. Similarly, if the number of particles is conserved in all collisions, specification
of the total number is given by the auxiliary condition

Hw(k) O(k, r) dk dr — 0. (1-204)

We expect from our discussion that the Boltzmann equation (1-5) together with the
boundary and auxiliary conditions (1-17) and (1:20) should yield a unique solution for
®(k,r). To prove this result mathematically, we consider two functions @; and @, each
satisfying the equations (1-5), (1-17) and (1-20). Then if ¥ = @, — @,, V" will satisfy equa-
tions (1-17) and (1-20) together with

L[¥]+wv.V,¥ = o. (1-21)

A uniqueness theorem will result if we can show that W is necessarily zero. We therefore
multiply equation (1-21) by ¥, and integrate over all k and over the cross-section of the
specimen. The first term becomes [[WL[¥'] dk dr, which may be written «[[L[¥"]>dKk dr for
positive k—see end of §1-1. The second term becomes

”wllfv.v,\Fdrdk - -IQ—waV.dsdk - %fwa W[ P2k, r)w‘P’z(R,r)]dk}dEds,
(1-22)
where ds is an element of the boundary of the cross-sectional area of the specimen, and where

’
f dk is an integration over all positive values of k of constant energy E. Making use of the

boundary conditions (1:17), we obtain the right-hand side of equation (1-22) in the form

o[ [l [ wtey e vy i [ [ uik) 6 k)

x G(K",k,r) P(K’, r) ¥(Kk’, r) dk dk’ dk”} dEds. (1-23)

18-2
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Now, from equation (1-13) we may write the first integral in the bracketed term of (1-23) in
the form

flflf, u(k’) G(k, k’, r) G(k”, k, I‘) IIJ’2(k/, I‘) dk dk’ dk”
= [ utk) 611k, 1) 60", K, 1) WrGK, 1) ke kK,

making use of equation (1-14). Thus the expression (1-23) becomes

—;—Hw{f” u(k, ¥) G(K', K, r) G(K", k, 1) [W*(K, T)
S, ) WK, )] dk K’ K| dE s

Interchanging k" and k” in this expression yields an identical form, except that the first term
in the square bracket becomes W?(k”,r). Adding this new expression to the above, and
halving the result allows (1-23) to be written

: f f w { J ' f ' f "u(k, ) G, k, 1) G(K", K, r) [W(K', r) —P(K’, r)]2 dk dK’ dk”} dEds.

Thus the net result of cur operations on equation (1-21) yields

KffL[‘F]dedqufff’ff, Q(k, K, k', 1)

< [W(K,r) —W(K’, r)]2dk dk’ dk" dEds = 0, (1-24)

where Q = jw(E) u(k,r) G(kK',Kk,r) G(K", Kk, r). Now, both Land Q are necessarily negative,
and since the remainder of the integrand in each term of equation (1-24) is a square, it follows
that the equation can only be true if each bracket is individually zero for all values of the
relevant wave numbers. The square bracket in the second term of equation (1-24) will
vanish for all k if W(k,r) = a+bE(k) for constant a and b, while it follows from equa-
tion (A 2) in appendix A that the same remarks apply to the first term if ¥'(k, r) is equal to a
linear combination of quantities that are conserved in an interparticle collision. It therefore
follows that equation (1-24) is always satisfied by W(k,r) = bE(K) (since energy is always
conserved in interparticle collisions), and will also be satisfied by W(k,r) = a+bE(K) if
interparticle collisions conserve number. In both of these cases we see that application of the
relevant equations (1-20) yields ¢ = b = 0, showing that ¥'(k,r) = 0, and hence that a
unique solution of our problem exists.

1-4. General properties of the solution

Although explicit solutions of our problem have not yet been obtained, it is possible to
deduce general properties of the solution under certain conditions. We give the following:
(a) Ifthe cross-section of the specimen possesses a centre of symmetry O, from which r is

measured, then ok, F) — — Ok, r). (1-25)
(b) Ifthe cross-sectional plane of the specimen is a symmetry plane and k, is the reflexion

of k in that plane Ok, 1) = — Dk, T). (1-26)
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(¢) If O refers to a specimen of given cross-section and given collision operator L, while
@' refers to a specimen with cross-section of the same shape, butincreased by a factor of N and
collision operator decreased by a factor of N, then if both specimens have the same surface
scatter, Ok, r") = NO(k, 1), (1-27)
where rf and r refer to corresponding points in the two cross-sections.

These results may be proved by demonstrating in each case that the two functions to be
shown equal separately satisfy the same Boltzmann equation, boundary conditions and
auxiliary conditions. It will then follow from the uniqueness theorem established in the
previous section that the two functions are equal. The detailed proof in each case is quite
straightforward and will not be given here.

We can now easily prove that when the cross-sectional plane is a symmetry plane, the
right-hand side of equation (1-3a) is zero, which fact was used earlier in obtaining the
Boltzmann equation for electrons. For this expression is proportional to

fw(k) O(k, 1) dk~2f ) {B(K, 1) + B(K,, 1)} dk = 0

via equation (1-26).

We have defined the temperature used in the Boltzmann equation, constant across the
specimen cross-section, by the condition (1-204) [[[E(k) w(k) ®(k,r) dk] dr = 0. Now, in
general, the k integral inside the square bracket will not be identically zero for all r, and this
means that the physical temperature at different points in a given cross-section (as measured
by some minute thermometer introduced at that point) will not be the same; thus a physical
temperature variation can be set up across the cross-section. However, it is readily seen by
the method used in the preceding paragraph that if the cross-section of the specimen is a
symmetry plane, then the above k integral wi/l be identically zero for all r, and hence no
such temperature (or by similar argument, number) variation is produced. In particuiar,
no temperature or density variation is set up across the tube in the case of gas flow. This
latter result has been previously obtained in a special case by Gross ¢f al. (1957).

It follows from equations (1-17), (1-19) and (1-26) that if the surface is perfectly ‘ white’
and the cross-section is a symmetry plane, then

(D(k,r)zfu(k' K, r dk/f (k,r)d

2f r) {(B(K', 1) + D(K,, r }dk'/f (k,r)dk—=0.  (1-28)

This result is frequently used (for example, by Fuchs 1938) as the boundary condition for a
perfectly ‘white’ surface. The above proof shows it to be strictly correct only when the
required symmetry plane is present. It may be readily seen from equation (1-22) and the
accompanying discussion, that the boundary condition (1-28) applied to the Boltzmann
equation determines a unique solution to our problem, without requiring any auxiliary
conditions.

1-5. Transport considerations

We now consider the transport by the particles of those physical quantities which may be
experimentally measured, and which are conserved in particle collisions. For phonons,
only the energy is of interest, this being related to the thermal conductivity, while for
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electrons, we deal with both energy and number, the latter giving rise to the electrical
conductivity. In the case of gas molecules, we are also concerned with the momentum or
‘wave number’, since this relates to the pressures and shear stress that arise. If I'(k) denotes
any of these quantities then the total transport per second A, of I' along the specimen is

given by A, — (1/879) [AffO(k) I'v, dk—fwa‘vz(D(k, r) dkdr], (1-29)

where 4 is the cross-sectional area of the specimen. When I'(k) represents energy or number
k) =+ I'(k), (k) = +f°(k) andv, (k) = —u,(k),showing that the first term on the right-
hand side of equation (1-29) is zero; this, of course, corresponds to the fact that a non-zero
transport of these quantities depends on the departure from equilibrium. If I'(k) = Z(k) the
resolute of K in the z direction, then this term is non-zero, being proportional to the force on
the tube cross-section for gas molecules. However, the k integral in the second term is now
identically zero for all r as may be easily shown from equation (1-26), since for gas molecules
the medium is isotropic; thus the pressure at all points in the cross-section is unaltered by the
departure from equilibrium. Shear stresses across the cross-section will be proportional to
A,, when I'(k) = X(k) or Y(k), the resolutes of k in the x and y directions, respectively, and
by a consideration of the cross-sectional symmetry plane it is readily seen that for gas mole-
cules the first term in equation (1-29) is zero as expected. However, the integral in the second
term will be non-zero in general and thus we may expect shear stresses to be set up across the
tube due to the gas flow.

Consider now the total transport per second A, of I' on to unit length of any cylinder inside
the specimen. We have

A, = (1/87) [ f f (k) T'v.ds dk— f f wl'd(k, 1) v.ds dk], (1-30)

where ds is an element of the boundary of the cylinder cross-section. When I'(k) represents
energy or number, we see by considering k and k that the first term on the right-hand side of
equation (1-30) is zero. To evaluate the second term, we multiply the Boltzmann equa-
tion (1-5) by I'(K) and integrate over all k and r. This yields

Af U(k) T'(k) dk :” Twv.V,ddkdr — ” Twdv . ds dk, (1-31)

since the expression arising from the L[ ®] term in the Boltzmann equation is zero, as shown
in appendix A. If I' represents energy or number, we see by considering k and k that the
left-hand side of equation (1-31) is zero, and hence from equation (1-30) there is no net flow
of energy or number through the cylinder. If I'(k) = Z(k) we see by considering the cross-
sectional symmetry plane that the first term in equation (1-30) is zero. However, from
equation (1-31) we see the second term to be non-zero. Itis proportional to the rate at which
momentum in the z direction is destroyed by boundary collisions and is thus proportional
to the force in the z direction exerted by the molecules on the cylinder. If I'(k) = X(k) or
Y(k), the k integral in the first term of equation (1-30) is proportional to the equilibrium gas
pressure on the cylinder wall at the point concerned, and the k integral in the second term
gives the change in this pressure due to the departure from equilibrium.

Finally, we deal with entropy. This physical quantity is not conserved in collisions,
neither between particles nor at the boundary, and it is therefore necessary to take into
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account its rate of production, together with its transport. If we consider unit length of
the specimen, then using the standard statistical definition of entropy, it may be shown
(Moliner & Simons 1957) that for any cross-section, the net flow out of the volume along the z
direction is proportional to [[U®dk dr and that the flow into the volume perpendicular to
this direction is proportional to }[[w®?v.ds dk; the rate of production of entropy inside the
volume is proportional to [[®L[®] dk dr. Itreadily follows from multiplying the Boltzmann
equation by @ and integrating over Kk and r that the rate of entropy production inside the
volume equals the total rate of flow out of it, while the discussion in § 1-3 shows that the rate
of entropy production due to boundary collisions is positive.

1-6. A mean-free-path treatment of boundary effects

It was mentioned in the introduction that in the presence of boundary scatter the Boltz-
mann equation for an infinite medium L[®] = Uhas at times been considered to be modified

to the form L[®]+uwdfr, — U, (1-32)

where 7, is some relaxation time for scatter of the particles by the boundaries alone. Tt is
obvious that if this is sufficiently accurate, and also if L[| @] can be represented by w®/7,, then
the result for an infinite solid may be modified for a bounded medium by replacing 7, by 7
where 771 = 17l47151 (1-33)
this is just the well-known result concerning the addition of the reciprocals of the relevant
relaxation times. The present basis for the equations (1-:32) and (1-33) would appear to be
rough physical arguments, whereby one assumes that the essentially discontinuous changes
undergone by a particle at the boundary at intervals of time 7, can in some way be repre-
sented by a continuous change, the rate of which will then be given by the second term on
the left-hand side of equation (1-32). But how should 7, be computed; is it just the time for
traversal of the specimen by particles of given wave number, averaged over all points at
which the particles may leave the boundaries? The position is further complicated by the
fact that the boundary conditions must to some extent enter into the calculation of 7,. For
if the walls were perfectly ‘white’ we might assume that 7, should correspond to a single
transversal of the specimen, but as the proportion of specular reflexion increases, we must
suppose that 7, increases in some way as well, since each collision with the boundary does not
now completely destroy the motion of the particle parallel to the direction of the temperature
gradient. Finally, we might expect the value of 7, to depend in some way on the collisions
undergone by the particle inside the specimen. In general, these collisions alter the direction
of motion of a given particle, and thus affect the time for it to transverse the specimen.

It would therefore seem that the rough physical argument on which equation (1-32) is
based requires backing by a more fundamental mathematical argument, which should
include some detailed prescription for the calculation of 7,.

Now, we have seen earlier that the flow of particles in a finite specimen is accurately
represented by a function ®(k,r) satisfying equation (1-5). Also we have from equa-
tion (1-29) that the net transport A, of energy or number along the specimen may be written

A, - f f TI(k) O(k, r) dk dr, (1-344)
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where II(k) depends on the property considered, but is independent of r. Thus if 4 is the
cross-sectional area of the specimen,

A, :Afﬂ(k)@(k) dk, (1-34)
where B(k) — A1 f O(k, r) dr, (1-35)
this representing the average of ®(k, r) across the specimen cross-section. It is obvious that

equation (1-340) is the form for A, that would be employed for conduction over an area 4 of
an infinite medium, if ®(k) now represents the spatially independent solution of the

Y

A

y\ > dy}(ds
N )

i ——

Ficure 1

Boltzmann equation for such a medium. Thus if equation (1-32) is to be correct, then the
spatially independent ® appearing in it must be ®(k) defined above, and we would there-
fore wish to show that ®(k) satisfies an equation of the form (1:32). To do this, we integrate
the Boltzmann equation (1-5) over the cross-sectional area of the specimen, when dividing

by A we obtain _
U—-L[®] = (wv/A)fdivr (jO)dr = (wv/A)f(Dj .ds, (1-36)

where j is a unit vector in the direction of v. To develop further the right-hand side of equa-
tion (1-36), we introduce plane Cartesian x and y co-ordinates to specify position in the
cross-section of the specimen shown in figure (1), where the x axis is taken parallel to the
projection of j (for the particle under consideration) on the plane of the cross-section. Then
if y is the angle made by j with the specimen axis, we have j.ds = 4 dysiny for an element
of boundary which the particle is approaching and j.ds = —dysiny for an element which
the particle is leaving. Thus if o' (= vsiny) is the resolute of v in the cross-section of the
specimen, the right-hand side of equation (1:36) becomes (wv'/A) [®*(k,y)dy where
®*(k,y) is the change in @ between the boundaries at any y. We can now define the average

N o

change in @ between the boundaries by ® = # -1 f ®* dy where % is the maximum width of
0

the cross-section in a direction parallel to the y axis; also a mean value £ of the width Z(y)

N o
of the cross-section in the x direction is defined by Z = # —lf Z dy = A/% . Hence, we obtain
0
for the right-hand side of equation (1-36)
(wv'/QA") d. (1-37)


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

BOLTZMANN EQUATION FOR A BOUNDED MEDIUM. I 153
To introduce @, we formally define the dimensionless quantity
a(k) = B(k)/D(k), | (1-38)
and thus from the expression (1-37) obtain the Boltzmann equation (1-36) in the form
L[®] +wd/r, = U, (1-39)
where r,=ar' and 1’ =% (1-40)

7’ is independent of the particle interactions and boundary conditions; it corresponds
physically to a certain well-defined average time for a particle of given wave number to cross
the specimen.

We have now obtained in equatlon (1-39) an expression formally identical with the
required form (1-32), but at the expense of having to introduce the quantity «(k), the exact
calculation of which via equation (1-38) requires the solution of our original Boltzmann
equation (1-5); thus it might at first appear that our treatment has been of little value.
However, we shall now see that under certain circumstances the parameter a(k) can be
estimated without solving our Boltzmann equation, the results of our considerations being
such as to clarify the earlier qualitative comments on the modification of 7, by the particle
interactions and boundary conditions.

Let us suppose at first that the boundaries are perfectly ‘white’. Then the simplest case
arises in the limit of no-particle interactions inside the medium, the value of a(k) corre-
sponding to a linear change in @ across the specimen. Under these circumstances

4- ffxdxdy IU %“Zdy/@]
o- lf 7 dy U ﬁt"dy/@:'

It is obvious that a(k) now depends only on the cross-sectional shape and the orientation of
the x and y axes with respect to it; in fact a(k) = « (¢) where Kk has spherical polar co-

ordinates (£, 8, ¢) with respect to the z direction. We know that (é"\ 2/3%/> 2) = 1, and we would
expect it to be close to 1 for reasonably symmetric cross-sections. For a circular cross-section
«is independent of ¢ and may be shown to equal 0-54, while for a square « depends on ¢, but
if averaged over ¢ yields @ = 0-60. For a rectangle @ increases, as the ratio of the sides
increases, becoming 0-7 and 1-2 for ratios of 10 and 100, respectively. We therefore conclude
in general terms that when there are no interactions a(k) ~ 0-5 to 0-6 for symmetrical
shapes, increasing perhaps to unity for very asymmetrical cross-sections. We may mention
in passing that if this approach is quantitatively followed up in the limit of no interac-
tions, the results of Casimir (1938) for this situation are readily obtained.

If we now suppose particle interactions to be present the problem is obviously more
complicated. We consider the situation when the interactions do not conserve momentum
and in the limit of specimen width much greater than the mean free path due to inter-
actions. If we assume that the particle interaction effect can be completely represented
by a relaxation time (despite the possible objections to this mentioned earlier), then the
variation of ® across the specimen will consist of an initial rapid increase from zero, to a
maximum value which will be maintained over the remainder of the cross-section ; this gives
a(k) = 1 independent of k. It appears therefore that under these circumstances «(k) varies
by a factor of up to 2, as we consider the transition from the limit of free-particle flow to the

(1-41)

19 Vour. 253. A.
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limit of very strong interactions, and it may be verified by detailed considerations that it
varies monotonically as the interactions increase. Results similar to some of these have been
obtained by Herring (1954).

Consider now the situation when the boundary scatter is partially specular. It is clear
that this will not substantially alter ® since that represents the change in ® from one boundary
to the other. However @, representing an absolute value of ®, will be increased and thus
a(k) will increase. This in turn implies the increase in 7, that we would expect. It is possible
to evaluate a(k) in detail for a given interparticle relaxation time and given proportion of
specular surface scatter c¢; this gives in the limit of very small interparticle relaxation time
a~(1—c) L,

Our final conclusion is therefore that it is reasonable to use equations (1-32) and (1-33) for
estimating approximately the combined effects of interparticle and boundary scatter, but
that the points mentioned above should be taken into account when computing 7,.

PART 2. PARTICLE FLOW BETWEEN INFINITE PARALLEL PLATES

2-1. Boltzmann equation and boundary conditions
We now consider in detail the solution of the Boltzmann equation (1+5), together with its
boundary and auxiliary conditions (1-17) and (1-20), for the case of particle flow between
two infinite parallel plates. We suppose the plates to be separated by a distance 2a, and
specify position by means of Cartesian axes, with the x axis perpendicular to the plates and
the z axis along the direction of the driving force, as in part 1; the origin is taken midway

T

p d
0 z
L Y
FIicure 2

between the plates as shown in figure 2. The situation is a particular case of that considered
in part 1, with the simplification that ® will now be independent of y, neglecting edge effects;
thus, employing the suffix notation introduced at the end of §1-1, we shall be considering
®,(x). This function satisfies the Boltzmann equation (1-12), which now takes the form
7,200 51,000 = U, (2:1)
q
where 7, = w,v, (2-2)

vy being the resolute of v, along the x direction. We note that the following relations exist
between quantities with subscripts p and p:

05 = —0'1), Uf’ = _U[ﬂ Lﬁ(} :qu. (23)

In order to specify the boundary conditions in the form given by equation (1-18), we now

establish the convention that positive and negative values of p should correspond to particles

with { respectively positive and negative. This gives the boundary conditions at the upper
and lower plates

Dy(+a) = %’qu(+a) (Dq(+a) and @,(—a) = %'qu(—l—a) D.(—a). (2-4)
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It follows from equations (1-14) and (2-2) that
0,Gp(+a) = 0,G,(+a). (2-5)
Finally, we see that the auxiliary equations (1-20) now become
+a +a
SEyu,| [ ‘@, dr] -0 and Su,| [0, dr]-o. (2-6)
y/ —a b —a

The form of the Boltzmann equation (2-1) shows it to consist of a set of coupled first-order
linear differential equations for the unknown ®,(x). We may therefore attempt to solve it by
the elementary technique of obtaining a complementary function and a particular integral.
The former is the general solution of equation (2-1) with the right-hand side put equal to
zeroand must contain 2.4"arbitrary constants corresponding to the 2.4/"®’sinvolved ; the latter
is any solution of equation (2-1). It then follows from the theory of differential equations that
the general solution of our equation is the sum of the complementary function and the
particular integral, and the conditions (2-4) and (2-6) may then be employed to determine
the values of the 24 arbitrary constants, and hence the unique solution of our problem.
We shall follow this programme from a mathematical viewpoint in the next three sections,
before considering in §2-5 the application of our results to cases of physical interest.

2:2.  The general solution of 0,d®,/dx+ 3L, @, =0
q

We now proceed to obtain the general solution of the equation

d®,(x)/dx+ 3 M, D, (x) = 0, (27
q
where M, = o,'L,,. (2-8)

To solve this equation, we assume a solution of the form
Q
O, (x) = e"‘xngoA},")x", (2-9)

where @, A and the set of vectors AP (0 < n < @) are so far left undetermined. The fact that
we shall presently show a solution of this form, containing 24" undetermined constants, to
satisfy the equation (2-7), will prove that it is the required general solution. Now, sub-
stituting our trial function (2-9) into the equation (2-7) yields

Q-1
W[ IM,, AP NAQL]+ 3 [ SM,, AP — AP+ (n+1) Ap+D] = 0. (2-10)
q n=0 q

In order for this equation to be true for all x, it is necessary that the coeflicients of x” be
identically zero for all relevant . This gives

%MMA;@—AA;,Q) =0 (211a)
and SM, AP —A4P = —(n+1) AF+D (2-110)
q

for 0 < n < @ —1. From equation (2-114a) we see that A must be an eigenvalue of the matrix

M,,, while, A{? is a corresponding eigenvector. In the general case of degeneracy of an

eigenvalue, there may exist several linearly independent eigenvectors, BY(1 < ¢ < 7T') and
the most general form for 4% will then be given by

T
4P = 3., (2-12)

19.2
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involving the 7" (so far) undetermined constants v,, Consider now the first of the equa-
tions (2:115), with n = @ —1: it may be written

T
S, A0 = — QAP ~ —Q 3 v,BY, (2:13)
q t=1

where Jpy = W[pq“Mpq{ (2-14)

Now, equation (2-13) will possess a solution for A~ P only if the right-handsideis orthogonal
to all solutions 7, of the adjoint homogeneous equation

Z‘];Ip”q - 0; (2'15)
q

. -f
that is, Ol’lly 1 zvaérQ) -0 (2-16)
b

for all 5,. This question is examined in detail in appendix B where it is shown that the
condition (2-16) gives rise to a set of 7 linear relations between the v;’s of the form

T
2 Ky, =0, (2:17)
=1

where K, = >0, BB}, which must be satisfied if equation (2-13) is to possess a solution for
b

AR~D. The possibility of satisfying equation (2-17) for non-zero v,is dealt with in appendix B,
and it is proved there that if A = 0 no such v, exist. Thus if 1 &= 0 equation (2:13) does not
possess a solution. Hence in our trial solution (2-9) we must put @ = 0 for A 4= 0in order that
no equation of the form (2-13) should result for which there is no solution. So if corre-
sponding to A = 0, there are H different eigenvectors B, (1 < s < H), each ‘normalized’ in
some way, say > B, = 1, we shall have a solution of equation (2-7) of the form

b

H
y(x) = 3 1By (2-18)

involving H arbitrary constants /. This solution will cover degeneracy of any eigenvalue A by
allowing the required A, to be equal.

Now if A = 0, it is shown in appendix B that it may be possible to find non-zero v, satisfying
equation (2-17). This will be so if the T relations of this equation are equivalent to some
smaller number, say 7'— S, independent relations. In this case, we may express 7'— S of the
v,’s in terms of the remaining S by relations of the form

which then gives the right-hand side of equation (2-13) as
T T-$ +
—'Q 2 v, [‘@g) + z at,r'@g)]-l-
r=T-§+1 =1
N
which may be written —@Q ¥ #,¢% where
t=1

TS
— t — ! . . .
P =BT 1y Y (219)

§=

1 Script capitals are used for symbols relating to eigenvectors with zero eigenvalue.
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equation (2-13) will then possess a solution for completely arbitrary z,. We see that the ¢} are
those linear combinations of the #J which allow the equation
3 p 7 = — Q6] (2:20)
s
to possess a solution for 2¥. Then, corresponding to AP = 3 %P we will now have

t=1
N

ALY = 3 u,2P. Further, since 3J, #9 = 0, it follows that a more general expression for
t=1 q !

AL~V is given by S T
b —
AQD = z—zlﬂtgg)+z=§1 v, 8. (2-21)

We now consider the second of the equations (2-114) with n = @ — 2, which for A = 0 may
be written SM, A9 2= —(Q—1) A@-D, (2-22)
q
In order for this to possess a solution it is necessary that the right-hand side should satisfy the
orthogonality condition Y 7,42~ = 0, and it is shown in appendix B that this cannot be
q

satisfied for any non-zero g, Thus in our trial solution (2-9) we must put @ = 1forA = 0in
order that no equations of the form (2-22) should result, for which there is no solution.
Hence for A = 0 we shall have a solution of equation (2:7) of the form

s s T
(%) = x 2w+ 2 w29+ 3 v, %Y, (2:23)
t=1 t=1 =1

where we suppose ¢ to be ‘normalized’, which may be added to the solution (2-18) to give
a more general solution containing H+ S8+ T arbitrary constants

H s s T
©,(x) = 2By e a2 I peP+ 3 m2)+ 3 v, Bp. (2:24)
s=1 t=1 =1 =1
As+0

But is this the most general solution of equation (2-7) ? To answer this in the affirmative, we
follow Friedman (1956) and define for any matrix M, a generalized eigenvector of rank n
with eigenvalue 4, B, (if it exists) by the conditions

3B, =0 and  S(J)r B, + 05 (2-25)
q . q

with this nomenclature an ‘ordinary’ eigenvector is, of course, an eigenvector of rank unity.
It is shown by Friedman that for any eigenvalue there always exists a chain of generalized
eigenvectors with the rank z taking successive integral values from 1 up to some maximum .
Now, if we operate with the matrix J,, on the equation (2-20) we obtain

S(ha)? 78 = ~Q 9 =0, (2:20)
q q

showing that D is a generalized eigenvector of rank two. Thus the proof given in appendix B
of the non-existence of solutions of equation (2-13) for A & 0is equivalent to proving that no
generalized eigenvectors of rank greater than unity exist for A 4 0; in fact, it is under the
latter title that the proof in appendix B is given. Similarly, the proof that equation (2-22)
possesses nosolution for A = 0 effectively proves that no eigenvectors of rank greater than two
exist for A = 0. Now, it is shown by Friedman (1956) that the totality of generalized eigen-
vectors span the vector space associated with the matrix M, , their number being equal to
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the order of the matrix, which in our case is 247 It is obvious that the number of arbitrary
constants in the solution (2-24) equals the total number of generalized eigenvectors, and
thus equals 2.4; showing that the solution (2-24) is the most general solution of equation (2-7).

We can further simplify our complementary function by making use of the fact, proved
in appendix B, that if A is a non-zero eigenvalue with eigenvector y,, then —2 is also an
eigenvalue with eigenvector ¢, = yz. Applying this result to the first term of equation (2-24)
gives the complementary function in the form

H N N T
D,(x) = Z [[By e +m By e* ¥ +x 3 w P+ 2 D)+ 2 v By, (2-27)
s=1 =1 =1 =1

As+0
2:3. A particular integral of o,d®,/dx+ 3L, @, = U,
q
It is shown in appendix B that the solutions of >7, % 6 = 0 (if any) can be chosen to
q

satisfy either #; = +%, or #; = —4%,. If no solutions exist satisfying #; = —4%,, we shall

term L, a U-matrix, while if any such solutions do exist we shall term it an N-matrix; the

reason for this nomenclature will become apparent in §2-5. We shall now see that the form

taken by a particular integral of equation (2-1) depends on whether L, is a U- or N-matrix.
Case A: L, 1s a U-matrix. It is obvious that if we can solve the equation

31,0, = U, (2-28)

Pa—q

where ©, is now independent of x, then th1s value of O, will constitute a particular integral
of equation (2-1), since for such a ©, the first term of this equation is zero. Now, the condi-
tion for equation (2-28) to possess a solution is that U, should be orthogonal to all solutions
%, of the adjoint homogeneous equation, which now takes the form 2 %, =0, since

Lp = L,,; that is, we require SU,#, =0, (2:29)
We can readily see that this condition (2-29) will always be satisfied since U5 = —U, and

By = +%B,, as L, is a U-matrix. Thus a particular integral is given by the solution of
equation (2-28) and we see from the latter two relations (2-3) that this may be chosen to
satisfy O = —0,.

Case B: L, is a N-matrix. In this case we see that the condition (2-29) will not be satisfied,
since at least one 4, exists for which #; = —%,. Thus equation (2-28) does not possess a
solution and we must therefore employ another method for obtaining a particular integral.
In order to deal with this, let us consider the method used in the previous section for ob-
taining the complementary function. We assumed a solution of the form (2-9) and found that
this satisfied equation (2-7) aslong as solutions could be found for the equations (2:11). Now,
suppose that we use the same trial solution (2-9) for the complete Boltzmann equation (2-1),
in order to find a particular integral. Then, if we choose A = 0, ] itis readily seen that for this
trial solution to satisfy our Boltzmann equation, we must satisfy conditions identical with
(2-11) except that for » = 0 we have

SM, A9 = — AP +0;1U,, (2:30)
q

1 It is obvious that for A = 0, the exponential term will remain in the equation, thus preventing a
solution from being obtained.
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differing by o, U, from the corresponding equation (2:115). Now, since we are interested in
obtaining any solution of equation (2:1), we wish to find the smallest value of @ for which a
trial solution of the form (2:9) can be found, with vectors A{ satisfying the equations (2-11)
and (2-30). We know from the discussion given earlier in this section that no solution exists
when @ = 0. If Q = 1, it is shown in appendix C that the relevant equations for 43" have no
solution, while for @ = 2, on the other hand, it is shown that a solution always exists. Thus
our particular integral @,(x) is given by

0,(x) = APx*+ APx + AP, (2-31)

where we see from equations (2:11) and (2-30) that the relevant A must satisfy the relations
%qu A;Z) =0, (2-32a)

DL, AP = —20,42, (2-320)

q

31,49 =1,
q

,— 0, AP, (2:32¢)

Equations (2:324, b) yield immediately that A, AP are respectively first- and second-rank
eigenvectors of the matrix M, corresponding to eigenvalue zero; these we have considered in
the last section. Equation (2-32¢) is, however, a new equation, the solution of which depends

on the orthogonality condition .
S(U,—7,49) #9 = 0 (2:33)
b

being satisfied for all #¢. It is shown in appendix C that this condition, together with the
equations (2-32), yields unique values for 49, AP, AP, the latter two being given by

s
AP = 3 u%), (2-34a)
i=1
T s
AP = Elvtﬂg’—}—lgl w2Y. (2-34b)
Here g, and v, satisfy the equations
s
Hop— 3 U9, (2:854)
=1 )
T s
S K~ SU#9— 3 L, (2:350)
=1 b =1
where H,= %ap%)’)@g@ I,= gape@g@g{ (2-36)

Further, it may be shown that the 4’s satisfy the relations

O — __ 40 a 1 ) N 1¢)]
AP — — A9, AP — L AP, AP = —A4D.

2-4. Fitting the boundary and auxiliary conditions

We see from equations (2:27), (2-28) and (2-31) that the general solution of our Boltzmann
equation (2-1) is

1H ' S S T
(D_b(x> = 3 [lsBj)s e—/lsx‘l’msBZ;s eths ] fx Y /h%f”r > ﬂ;%ﬁ”‘ 2 Vz%’g)+®p<x>s (2:37)
s=1 - =1 =1

As*0
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where ©,(x) is obtained from either equation (2:-28) or (2-31) as the case may be. The
solution (2-37) possesses 24" (= H-+ S+ T') undetermined constants, which according to the
results of § 1-3 should be uniquely determined by application of the boundary and auxiliary
conditions (2-4) and (2-6) ; this we now consider. If we put 9,, = G, (+a), and write

Wy W, =S G, Wy = WS, (239)

pq " q

for any vector W, the boundary conditions (2-4) applied to equation (2-37) yield

YH N T
> [L*Bjetatm *By ethe] 4+ 3 p(a* ) +-*D7) + v, *BY+*O5(+a) =0
s=1 t=1 t=1

As+0 .
and (2:394)

B4 * A A s ® ® & ®

2 L*Byerhetm *Brehe] = 3 u(a*)—*) + 3 v * B +*0,(~a) = 0.

As+0 (2‘39 b)

There will be .4#” equations of the form (2:394) and 4" of the form (2:394) corresponding to
the 4" modes leaving each of the upper and lower surfaces, respectively, and thus we might
expect the boundary conditions in themselves to be sufficient to determine the 2.4 arbitrary
constants in our general solution. To see why the auxiliary conditions are in fact necessary,
we note first that any first-rank eigenvector #{’ appearing in the solution (2-37) is conserved
in interparticle collisions (see appendix A). If this quantity is also conserved in boundary
collisions, it may be readily shown that *#%’ —= 0, and hence v, will not be determined by
equations (2-39). Instead, we have a corresponding auxiliary condition

+a tH
S| [ @mds|= 3 (4 m) g eve et (Sw, 7} B,.)]

AsF0
S T +a
20| 3 (3 w,2P99) + 3 Vl(zwp@g>gg>)] +3w,39[ " 0,(x)dx =0, (2-40)
i=1 b =1 p b —a

which taken together with the equations (2-39) (which remain consistent although *#{ = 0)
gives the correct number of equations to obtain the undetermined constants. As a first step
towards finding these constants, we add equations (2:394) and (2-396) which gives the
following /" equations

+H N

21 ns[*Bps etAsa + *Bﬁse*)(sa] + tz:l ﬂt[a(*g%) - *(gg)) +- (*c@%)_!_ *@g))]
= =
As+0

T
+t§1 v, (*BY 4 *BY) +-*O5(+a) +*¥0,(—a) =0, (241)

where n, = [ +m,. It may be easily shown that the coeflicient of 4, in the second summation
of equation (2-41) is zero if ¢ = - € ¥ and that the coefficient of v,in the third summation is
zero if #9 — —#Y. Also, it readily follows from the remarks at the end of cases 4 and B of
§2-3 that we always have ©;(+a) = —0,(—a), whence we see that the terms in *®, are
zero in equation (2-41), as is also the contribution to equation (2:40) arising from the ©),
term. Since it may be shown that the number of constants with non-zero coefficient in
equations (2-40) and (2-41) is less than or equal to the number of independent equations,
it follows that such constants must be zero. Hence we see that

my=—l, =0 if 9= —%Y and v,=0 if 29— 259
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Thus the solution (2-37) may now be written
9 e s s T
D, (x) = 3 [[B,ed* =By e™ ¥ 4 x 3 u, 6P+ > 29+ X v, BP+0,(x). (2:42)
s=1 =1 =1 t=1
A0

This solution contains 4" arbitrary constants which may be determined by applying the
boundary conditions (2-4) at one surface, that is, by use of equations equivalent to either
(2-394a) or (2-395). Since the deductions about the arbitrary constants made so far aresuch as
to automatically satisfy the auxiliary conditions (2-40), these latter are now superfluous.

Applying therefore our boundary condition (2-394) at the plane x = —a we now have
1H N T
sgl [[*B, e*he—#B; e-Asa] 1 glﬂt(*gg)ga*gg)) + tgl b *¥BY = —*@,(—a) (2:43)
As+0

for p positive—a set of 4" linear equations to determine the .#" unknown constants. If L, is
an N-matrix, the right-hand side of equation (2:43) may be somewhat simplified as follows.
We know that AP is a definite linear combination of first-rank eigenvectors with zero
eigenvalue, and hence by incorporating suitable terms from the complementary function
into the particular integral, it may be seen from equation (2-31) that the latter can be written

@, (%) = AP(x?—a?) 4 APx + AP. (2-44)
This gives the right-hand side of equation (2-43) as
—*@,(—a) = *APa—*AP.

We now consider deductions concerning the arbitrary constants that can be made from
equation (2-43), when additional symmetry is present in the medium to which our equations
refer. The basis of our examination is as follows: we know that 0,(x) is composed of one or
more vectors II, (depending on whether L, is a U- or N-matrix) which are obtained from
equations of the form YL, I, = F, for a given F,. Now, if the matrices L, and M, are both

q

invariant under a particular symmetry group, and if the vector F, transforms as a definite
representation of that group, we may deduce that II, transforms likewise. Hence if all
the II’s contributing to ©,(x) transform in the same way, we can deduce that ©,(x)
transforms in that way. Further, assuming that ¢, is invariant under the same symmetry
group as is M), we see from equation (2-38) that *@,(x) will transform in the same way as
©,(x). Thus the right-hand side of equation (2-43) transforms as a particular representation
of the group under which M, is invariant. As far as the left-hand side of equation (2-43) is
concerned, we make use of the fact that the first-rank eigenvectors B, of M, all transform
according to some representation of the group under which M, is invariant, while the
defining equation (2-20) for the second-rank eigenvectors corresponding to A = 0 enables
us to find under which representation these transform. As above, we assume ¢, to be
invariant to the group concerned, and thus all terms, such as *B, on the left-hand side of
equation (2-43) transform as some representation of this group. Now, we have shown above
that the right-hand side of equation (2:43) transforms according to a particular representa-
tion of the group, and hence for equation (2-43) to be satisfied, it is necessary that all the

+ This will generally be the case unless some additional directional properties are impressed on the
specimen surface by, say, ruling grooves parallel to an arbitrary direction, '

20 Vor. 253. A.
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undetermined quantities, such as [, shall be zero, which have as coefficient a vector not
transforming in the same way as the right-hand side.

We shall apply these ideas to the cases where the following are symmetry planes; (a) y = 0,
(b) z = 0; we shall also consider the case of isotropy. Ify = 0 or z = 0 is a symmetry plane,
then Z,, and M, are both invariant under the inversion group where this applies to reflexion
across the plane (this would not be true for M,, if the symmetry plane were x = 0). By
applying the method outlined above, it follows that when y = 0 is a symmetry plane, all
constants on the left-hand side of equation (2-43) are zero, whose coefficients transform as
the minus representation of the inversion group, while when z = 0 is a symmetry plane all
constants are zero whose coefficients transform as the plus representation of the group. This
method may also be used when the x axis is an axis of n-fold symmetry; we shall now con-
sider the limiting case of this, when the medium is isotropic. Here 7, and M, are both
invariant to the axial rotation group applied about the x axis. If ¢ measures azimuth about
this axis, it can be shown that 0, is always proportional to cos ¢, and we can then deduce that
the only non-zero undetermined constants are those whose coefficient is an eigenvector
possessing a cos ¢ variation. If we specify a state by spherical polar co-ordinates (%,0,¢)
relative to the x axis we can deduce that when Z,, is a U-matrix, ®, varies as sinf cos ¢,
since U, then varies in this way and L, is invariant to the complete rotation group.

Finally, it can be readily shown that the solution (2-42) satisfies the three general relations
given in §1-4. '

2-5. Application to the physical situation
Having dealt with our problem from a mathematical standpoint in the last three sections,
we now return to a consideration of physical applications of the results obtained. Itisobvious
from our treatment that a specification of the quantities %, which are conserved in inter-
particle collisions, and which therefore satisfy 31, %, = 0 is fundamental to determining
q

the nature of the solution. Possible quantities that %, can be are: the energy E,, the number
N, (which is, of course, unity for each particle) and the x, y and z resolutes of the wave
number, X,, ¥, Z , respectively. There are four sets of these quantities that occur in practice.

(1) #,=E, This occurs with phonons and electrons undergoing those Umklapp
processes in which the total number of particles alters.

(2) 2, = E,, N,. This occurs with Umklapp processes in which the total number of
particles is conserved, and also in the more important case of scatter of phonons and
electrons by lattice imperfections of one type or another.

(3) #,=E,, X, Y, Z,. This occurs with phonons and electrons undergoing non-
Umklapp processes conserving wave number in which the total number of particles alters.

(4) 8,=E,N, X,,Y,, Z,. This occurs with non-Umklapp processes in which the total
number of particles is unaltered, and also in the very important case of intermolecular
collisions in gas flow.

We shall now generalize the term ‘ Umklapp’ or U-process to cover any collision in which
wave number is not conserved (cases (1) and (2) above) and ‘non-Umklapp’ or N-process
to cover any collision in which it is conserved (cases (3) and (4)). By comparison with
§2-3 we see that for a U-process, L, will be a U-matrix, and for a N-process it will be a
N-matrix.
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In order to apply our solution (2-42) we shall first consider the form taken by the comple-
mentary function, before dealing with the particular integral and general solution. To tackle
the complementary function, we must investigate what second-rank eigenvectors exist in
each of the four cases given above. To do this, we obtain in each case the zero elements of the
relevant K, matrix (defined below equation (2:17)) to see what solutions there are of
equation (2-17) and hence to derive the possible linear combinations of first-rank eigen-
vectors ¢ (defined in equation (2-19)) which allow equation (2-20) to possess a solution for
the corresponding second-rank eigenvector 29. It is clear that K, = 0 if the two vectors
A, BY contributing towards it transform in the same way under the inversion group, where
this replaces p by p, and further elements may also be zero if additional symmetry is present.
Since the detailed calculation is quite straightforward, the results will be tabulated for the
above four cases:

(1) T=1,8=1:4P =E,=%.

(2) T=2,8=2:40=E,=¢P, B3P =N, =%,

(38) T=4,S=2: 8P =E, 3P =X, .@;):Y BY =2,

general anisotropy: %}) = Y;; (Kis/Kyp) X, ) %;2) = Zp_ (K14/K12)‘X;7
isotropy: ¢V =Y, ¢P=2712,

(4) T =5 (a) §=1 for general anisotropy, () S =3ify =0 and z= 0 or if x = 0 are
symmetry planes:

B =, IP=N, FP=X, FP=T, IP=2,;
(a) &P = K3)(:,,+K4I;+Zp,
where Ky = [(Kig Kos — KpuKy5) [ (K3 Koy — K4 Kos) ]
and Ky = [(Ki3 Kys — Kys Ky5) [ (Kyy Ko3— K3 Kyy) ]

(8) 6 = Y, 6P = Z,, € = B, (Kigf K N
(b) applies, of course, for isotropy, and in particular to molecular flow.
In many of these results we are concerned with evaluating the ratio of non-zero elements

of the relevant K ,-matrix. The general element we are concerned with is of the form
K= Zopg #, where 9, = E, or N, and #, = X,, Y, or Z,. To evaluate such an expression

it is necessary to return to our original formulation, making use of the continuous variable
k, rather than the suffix p in order to specify a particle. In terms of k, and making use of
equation (2-2) we have

Ko f 9(E) #(k) dk, (2-45)

where the integration is taken over the relevant volume in k space. This result may be
readily transformed to

Ko [ f #(K) #'(E) dS,—f f A(E) dk:l, (2-46)

where A(E) = jfw(e)%(e) de,

dS is an element of the boundary area in K space, and f=11if #, = X, f=01if #, =7,
or Z,. If § = 1, itis easily seen that the first term in (2-46) may be neglected if #°(E) over the

20-2
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boundary area is much less than the average value of #"(E) throughout the relevant volume
in k space. This will be so for gas molecules, phonons at sufficiently low temperatures, and
for electrons if the Fermi surface does not cut the first Brillouin zone.

To complete the detailed formulation of the complementary function, it is now necessary
to obtain all the A, and B, ; this we must defer until we deal with a definite situation in which
L,, is specified. Meanwhile we may note that the complementary function (2-27) involves
terms of the form exp (A, x). On physical grounds we might therefore expect the various A;
to be real, since otherwise the solution might possess an oscillatory behaviour inside the
medium. Although the matrix M, is not Hermitian, it can nevertheless be shown that its
eigenvalues are real; this is proved in appendix B.

We now consider the form taken by the particular integral in the four cases given above.
For cases (1) and (2) L, is a U-matrix and thus the particular integral is given by the solution
of equation (2:28). We note that this equation is the Boltzmann equation for an infinite
medium, and thus our particular integral is the spatially constant solution for such a
medium. For cases (3) and (4) given above, [, is a N-matrix and thus the particular
integral is given by equation (2-44) where 4P, AP, AP are determined via equations (2-32),
(2-34) and (2-35). Applying equation (2-355) to case (3) we readily see thatv, = vy = v, = 0
and that v}, #;, 4, are determined by

Koy + Loy oy + Lyp ey = %% X},a
Koy vy + 15y oy + Ly iy = %U}: Y, (2-47)
Koo+ 14y +1pp, = gUp Zp'

If additional symmetry is present, further terms in equation (2-47) may be zero. Thus if
x = 0 is a symmetry plane,

Kis = Ky = I 2122:025;[/;,)(},.
If y = 0 is a symmetry plane,

KIS :Izl :I32 2141 =0= %%)(p:
while if z = 0 is a symmetry plane,

K=y =Ly = Iy = 0= 3U, X, = SU,¥,

This latter applies to the isotropic case, where we thus have
=g =0, 4= %%Zp/%”pzp9§;2)~

In case (4) with general anisotropy there is a single second-rank eigenvector as considered
above, and application of equation (2:356) yields vy = v, = v, = 0. v, v, and g, are given by

Ky vy + Kyovo 4+ Iy oy = %Up X;»
Ky + Kygvy+ Ly py = %Up v, (2-48)
Koyv1 + Ksgvy+ Iy py = ’ZU:{;Z{)'
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Again, these simplify if additional symmetry is present. If sufficient symmetry is present to
give the three second-rank eigenvectors mentioned earlier, we find that when x = 0 is a
symmetry plane v, = v, = v3 = v, = v; = 3 = 0, while g and g, are given by

Ly +dyppy = %Ujb Y};,
Ly g+ Lsppty = %%Zp'
Ify = 0 and z = 0 are symmetry planes it may be seen that

wm=0 and u=3U,Z/[>0,2,9P.
b b

(2-49)

Thus for the isotropic case, we obtain the same particular integral for cases (3) and (4);

0,(x) = AZ,(a®—x?) + Al,x+&,, (2-50)
where >L,¢ =20,2, 3L, ¢ =U—As,(, (2-51a)
and A= (%U[)Zp)/(gap 82y (2-515)

Now it will be shown in §2-6 that when at more than a few collision mean free paths
(A71) from either boundary, the solution (2-42) reduces to the particular integral ©,. In the
case of U-processes this is what we should expect since ®, there represents the solution for an
infinite medium. In the case of N-processes we shall be left with the solution (2-44) and it
may be shown that on the assumption of a relaxation length .#, the ratio of the contributions
from the term in x to that in (x2 —a?) is of the order of (£ /a), while the ratio of the contri-
butions from the constant term to that in (x2—a?) is of the order of (£ /a)2. Thus when we
are well away from the boundary, the predominant contribution to ®,(x) will arise from the
term in (x?2—a?) and we shall see in §2-6 that this quadratic variation is equivalent to the
quadratic variation given by the usual viscous flow theory. For both U-processes and
N-processes the exponential terms in the complementary function will yield the correction
to the result for an infinite medium which arises in the neighbourhood of the boundaries;
for N-processes the constant term and linear term in ©,(x) will also contribute to this
correction.

We can now see in a qualitative fashion how the ‘Knudsen minimum’ effect, observed
for N-processes both in gas flow and in phonon flow through liquid helium, follows from our
results. The solution (2-42) for N-processes may be regarded as consisting of the imposition
of a term corresponding to ‘viscous flow’ upon a term which effectively corresponds to the
complete solution for U-processes. In this latter case, the effect of the exponential terms is to
decrease the flow as we leave the boundary, below the value obtained when there are no
interparticle interactions. Thus in the case of N-processes, we have this initial decrease in
flow as a increases from zero, followed by an increase as the quadratic ‘viscous’ term
counteracts the decrease due to the exponential terms.

In order to evaluate the complete solution (2-42) in detail, it is necessary to deal with a
specified collision operator allotting to .#"a value for which we can perform the resulting
numerical work in obtaining the eigenvalues, eigenvectors and inverse. Itis hoped to follow
this approach in a subsequent paper, both for electron flow in thin films and for gas flow in
narrow tubes.
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2-6. Transport considerations

We now return to an evaluation of the transport of the various physical quantities I',,
which are conserved in interparticle collisions, in the x, y and z directions, making use of the
solution (2-42) of our Boltzmann equation. A general consideration of transport was given
in §1-5, and we shall now confine our attention to those situations in which a non-zero
transport results only by virtue of the deviation from the equilibrium distribution. By intro-
ducing 7, = 0§’ = w,vy, 0 = w,vY, 0P = w,v?, it may be readily seen from equation (1-29)
that the total transport per second per unitlength in the y direction of I, along the zdirection,
is given in the present notation by

A, = (~1/8m) 35T, [ f f @, (x) dx]

— (—1fsm)| 3 17 (e e o) S8 (T, + T)]
P S ? ,

-+ 24121 w(ZoPL,29) —|—t§l v(20PL,BP) +3oPT, (AP -|—%a2A§,2’)} .
b b b (2:52)
Here the result is given when Z,,, is a N-matrix. Ifitis a U-matrix the result is obtained by
letting 4 = AP = 0 and 4 = ©,. If I; = —1I, as is the case for I', = X, ¥, or Z,, it is
readily seen that A, = 0, this agreeing with the results of §1-5. On the other hand, if
[ = + 1), asisthecaseif I', = £, or N, then in general all the terms in equation (2-52) will

contribute; this will remain true whatever symmetry is present.

Considering now the transport in the y direction, we readily see that A,, defined
analogously to A, is given by equation (2-52) with ¢{¥’ substituted for ¢{?, and that if
I'; = — T, it is zero. If I'; = + Iy, then for general anisotropy all terms will contribute to
A,, butifeither the y = 0 or z = 0 planes are symmetry planes it is easily shown that A = 0;
in particular this result holds if the medium is isotropic.

Finally, we consider transport in the x direction. Here we define A, (x) as the total
transport of I' per second per unit area in the y—z plane along the x direction; this will be a
function of x. We shall have

Alx) = (=1/8m) 30, T}, B, x) | (2:534)

\H
= (—1/87%){ 3 [[e ™30, [, B, +e" 30,138, ]
s=1 b b

A0
N N T
+xt§1 ”’[g‘fﬁ L9+ El Hy [%:”p L,29]+ gle [%’p L,%y] +§"p I Gp(x>} . (2-530)
]

Now, since I'; = + T, and since A, = 0 in the first summation over s, it follows from equa-
tion (B1) that this term is zero. Also the second term is zero from the requirement that
equation (2-20) should have a solution. As far as the remaining terms are concerned, we
consider first the case of U-processes when I', = E, or N,. Then from earlier results v, = 0
and also 49 = -+ %} and 29 = —2p. Hence since I'; = + T}, the only non-zero terms for
general anisotropy on the right-hand side of equation (2-535) are

S
zgl /‘z(%”p@g)rﬁ 4*%0}, FP ®P'
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This is independent of x as expected from the results of §1-5, and must be zero by a con-
sideration of its value at the boundaries ¥ = +a, where we know that no net flow of energy
or particles occurs in the x direction. In the case of N-processes, the possible non-zero terms
remaining in equation (2-536) are

N ) T
Ax) = 2 w[20,290,]1+ 3 v (20,891, +x230,APT, +x30,APT,+ 30, APT,.
« =1 p =1 p b » )
(2-54a)
Of these, we see from the requirement that equations (2:325, ¢) should possess a solution,
that > 4?0, 1’ = 0 and Y 4’0, ', = S U, T,. This gives
b b b

s T
Ay(x) = 2 m[20,29T,) 1+ 3 v[20, 29T, ] +x2U, 1)+ 3400, 1, (2-540)
t=1 P =1 b §4 ¥4

Considering first the case that I'; = +I'y, we have that the third term in equation (2:545) is

always zero. The remaining terms are independent of x, as expected from the results of §1-5,

and since number and energy are conserved on the boundary their sum must be zero.

Taking now the case when I'; = —TI',, we have from previous results that the first, second

and fourth terms in (2-54b) are zero, leaving A, (x) = x3 U, I',. Hence the net flow A, of I'on
; p .

to the plates is 2¢3 U, Iy, this agreeing with equations (1-30) and (1-31). If symmetry
b

planes are present, this may be zero if I', = X, or ¥, but notif I', = Z,.

It is interesting, as well as a check on our results, to consider the production and transport
of entropy, making use of the discussion at the end of §1-5, and evaluating the relevant
quantities over a rectangular parallelepiped with base of unit area, lying between the plates,
using our known solution (2-42) for ®,(x). Details will not be given of this calculation, the
algebra of which is somewhat involved. It transpires, as we should expect, that A, = A +R,

+a )
where A, = YU, f ®, () dx is the net flow of entropy out of the volume along the zdirection,
y/ —a
A, = Y0,D(+a) is the net flow into the volume due to its production at the boundary
b

plates, and +a
R | (3L, ®,(x) ()] d
L

is the rate of entropy production inside the volume due to interparticle collisions.

2:7. The solution in special cases

We consider in this section our previous results in the following four special cases:
(A) the distance between the boundary plates is much less than the collision mean free path,
(B) the distance between the plates becomes very large, (C) the collision operator satisfies
the relation L,, = L{,q_ (g # 1), (D) a relaxation time exists; that is L,, = w,7;,d,,. We shall
reserve for §2-8 a discussion of the situation when there is a large number of N-processes
together with very few U-processes.

Case A. In accordance with remarks made in the introduction, we see that for this case,
the Boltzmann equation (2-1) now takes the form

- d®,(x) U

P dx ) (2'55)



http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

168 S. SIMONS ON THE
with the collision term omitted. This equation has the general solution
O,(x) = o' Uyx+W,, (2-56)

where the W, are the required 24" arbitrary constants. These are determined by the
boundary and auxiliary conditions (2-4) and (2-6) which now become

a*(oz ' Up) +*W; =0, —a*(o,'U,)+*W, =0, (2-57)
and 2w, EW, =0, ZwW, =0, (2-58)
b b

respectively. This situation corresponds, in gases, to free molecular flow, and we have here
given more general boundary conditions than are usually taken into account. Since for
practical purposes the previous theory in this region is satisfactory (see, for example,
Devienne 1958), it will not be considered any further, except to mention that the above
equations (2-56), (2:57), (2-58) may be shown to arise from the corresponding equations of
the general case by expanding all terms of the form exp (A,x) as a power series in x and
rejecting powers of x higher than the first.

Case B. We first proceed to show that as we leave the boundary, the complementary
function (2-27) decreases, and tends to zero as the distance from the boundary tends to
infinity. This reduces the general solution (2-42) to the particular integral ©,(x), given by
equations (2-28) or (2-44) as the case may be.

Application of the boundary conditions, equivalent to equation (2-43), to the solution
(2-42), yields as an order-of-magnitude result

N
S LB~ By o] x —6,(—a), (2:59)

Vi
where [; = [ e**se, Tt therefore follows that ¥ [; B, must be finite. At a distance " from the
s=1

boundary x = —a, we have from equation (2-42)

Va
O, (x) » O,(x) + Sgl LB, e ¥ — By e~ Qa=2)], (2-60)

where the summation represents the complementary function (2-27). Now, it is clear that if
x" < a, then the second term in this summation cannot be greater than the order of magni-

N
tude of the first term, and thus the complementary function, Il, (x) 21 By e,
o

Vi
Hence,since 3 [ B,,isfinite, it follows that IT,(x") — 0 asx” — oo. This conclusion depends

s=1
on the fact that the discrete A, are all non-zero, except for those A, corresponding to physical

quantities conserved in interparticle collisions. However, if 4" — co, then a continuous

N

spectrum of 1 about A = 0 may occur and this could prevent ¥ [/ B, e~** tending to zero as
s=1

x" — 00. To show that our previous result does still remain valid, let us suppose A to be
continuous with v(1) dA values in the range dA. Then the above considerations give

IL,(x') ~ f g)edl, (2-61)
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where g,(4) = v() I'(1) B,(A). We sce that the right-hand side of the relation (2+61) is Z (g),
the Laplace transform of g,(1), and since it is known that f ) g,(1) dA is finite, it follows that
% (g) exists for all positive +’. It may then be shown (DOCtSC(;l 1043) that lim Z(g) = 0,and

hence we see that lim II,(x") = 0, giving the required result. The rate at which II,(x")

x>0
decreases for increasing x" depends, of course, on g,(1), and thus requires investigation in
each individual case.

From the discussion at the end of the last section, we see that it now remains to be shown
that if L, is an N-matrix, then the quadratic term of 0,(x) as given by equation (2-44) is
equivalent to the result obtained for gas flow via the introduction of viscosity and to the
result which would be obtained for other particles using the same method ; this we proceed
to demonstrate.

The calculation of gas flow generally proceeds in the following stages which we shall
explain in general terms to include all types of particles. We consider first an infinite volume
of particles whose net wave number, conserved in collisions, is non-zero. Then the distribu-
tion function f for the particles will be given by

S, 2, B, N,) = o4 X, 49, ¥, 4 ¥ Z,+ V3B, + ), (2:62)

where the 7”’s are constants, ¥, 7, ¥; being related to the components of the total non-
zerowave number, and 7z = 1/kT. f°corresponds to the equilibrium distribution function:
Maxwell, Fermi-Dirac or Bose-Einstein as the case may be, and ¥; = 0 if number is nof
conserved in collisions. We now suppose that the flow of particles is occurring under circum-
stances in which the mean wave number of a particle, averaged over all particles at the point
under consideration, is non-zero, but in which there exists a variation in this mean wave
number from point to point in the x direction, which mean can be considered as constant
over distances of the order of a mean free path. In the case of gases, this corresponds to the
existence of a gradient in the x direction for the velocity of gas flow in the z direction. It is
readily shown by the approach given in §1-1 that this gradient in mean wave number will
give rise to a departure @), from the equilibrium distribution (2-62) which satisfies the
Boltzmann equation

oG TG o ds
In the case of gas flow in the z direction, we have (d7;/dx) = (d¥,/dx) = 0, but for an
anisotropic medium it may be necessary to relate these differential coeflicients linearly to
d7/dx in order that a solution to equation (2-63) should exist. Now, @, having been
obtained from equation (2-63), the next step in gas flow is to calculate the rate of transfer of
z momentum in the x direction; this immediately gives the shearing stress acting in the
z direction on planes perpendicular to the x direction. It follows from equation (2:63) that
®, is proportional to d7,/dx and since the rate of momentum transfer, considered in §§1-5
and 2-6, is linear in @, we see that the shear stress is proportional to d7;/dx. We may there-
fore obtain from our calculation a coefficient of viscosity 7, in terms of which it is possible to
evaluate the total gas flow by the usual macroscopic theory.

To show the connexion between this approach, and the one leading to our result (2-44),

(263)

EL ®, = kTo ( dv, d7, d"V)

21 VoL. 253. A.
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we first notice that the introduction of a viscosity is an unnecessary step in the usual calcu-
lation of gas flow. To see why this is so, we consider the problem of flow between two parallel
plates, comparing our formulation in terms of ®,(x) and the ‘usual’ formation in terms of
the 77’s together with a @;. It is readily seen from equation (1-2) that

O, (x) = —kT[V, X,+7,Y,+7,Z,] + D, (2-64)

when 7, < (9f°/07;)[(0*(°[07"}), etc., and we suppose @, < D,(x). Now, from equation
(2-53a) it follows that the rate of transport of Z, in the x direction per unit area in the

yz plane is given by A, = (—1/87%) zp:%zp o, (2-65)
since the contribution from the first term in equation (2-64) is zero. Thus
dA, o dd, _
0x dre ~§7ﬁ§0pzp—a—;, (2 66)

and this represents the rate of loss of Z;, by a rectangular parallelepiped of unit base and
thickness dx. This loss in the x direction is balanced by the applied driving force, and we see
from equations (2-1) and (A 3) that

(—0x/8m3) %U}, Z, = (—0x/8m3) %(TI,Z[,(d(DI;/dx). (2-67a)
Thus it is seen from equation (2-66) that the relation
U, Z, = 30,Z,(dD,/dx) (2-670)
b b

corresponds physically to equating the z-momentum input due to the applied driving force
tothatlostin the x direction; thisis the basic physical fact employed in finding the flow, when
using a viscosity formulation. Now, the solution of equation (2:63) for gas flow yields

®; — kT(dYdx) 4,
where 3L, ¥, = 0,Z,. Thus from equation (2-675) we have
q
e 3UZ
ds* kTS0, Z,9,
)

(2-68)

which yields O, (x) = [3U, Z,/230, Z,¥,) (a>— %) Z,, (2:69)
P P

by the use of equation (2-64) and the boundary conditions 7;(+a) =7,(—a) = 0. It is
readily seen from equations (2:50) and (2-51) that the result (2-69) is equivalent to the
first term of the former, as is required.

In the general anisotropic case, the ‘viscosity’ result depends on the solution of equation
(2-63), followed by an application of the conservation of wave-number condition (2:675),
which latter may also have to be applied with Z, replaced by X, and Y,, if these occur
in the solution of equation (2:63). It can be seen that equation (2-63) is equivalent to
equation (2-325), while the generalized equation (2-676) is equivalent to equation (2:33).
Thus, just as equations (2:325) and (2-33) lead to the results obtained in detail in §2-5, so
similarly equations (2:63) and (2:675) may be shown to yield the same results as far as the
essential parabolic variation is concerned.
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Case C. Itis proved in appendix B that if Z,, = L,; (p + g), then
(% —As) Bps = (%p "I_/ls) B])s (270)

Thus if A, = 0, &5, = +4%,,, and so L,, must be a U-matrix. The particular integral 0, is
therefore given by the solution of equation (2-28), and it is readily shown that since

Ly = Log (£ + 9), 0, = U /L, (271)
Further, the second-rank eigenvectors 2, 2} of case (2) in §2-5 are given by
9P = 0,E|L,,, DP = a,/L,,. (2-72)

This situation occurs, for instance, with certain types of impurity scatter of phonons or
electrons (Klemens 1955), and it is clear that the use of equations (2:70), (2-71) and (2:72)
greatly simplify the general solution (2-42).

Case D. The assumption of a relaxation time 7 is made in many collision problems in
order to simplify them; we shall now see some of its deficiencies. For this case we have
L,, = w,1;'0,, with 75 = +7,. This gives M, = (1,v3")~'3,,, showing that the eigenvalues
A, of M, are the 2.4 quantities (7,0%) ! (— A" < s < +47), and it is obvious that these occur
in pairs of 4-A; and —A,. The corresponding first-rank eigenvectors are given by B, = d,,,
and since our matrix M, is diagonal, the existence of second-rank eigenvectors is precluded.
This in turn means that our method for obtaining the particular integral in the case of
momentum conservation cannot now be employed. It is also obvious from the form taken
by B, that our relaxation-time assumption does not allow the possibility of quantities such as
E,, N,, X,, Y, and Z, being eigenvectors with zero eigenvalue, and thus we cannot find a
relaxation-time formulation in which these quantities are conserved in collisions. This latter

point is substantiated by the fact that the expression Y L,, ®, I,, giving the total time rate of
ba

change of the quantity I', is shown to be zero in appendix A for arbitrary @, if I, is con-
served in collisions. Now, however, it takes the form Y 75w, @, I',, when the relaxation-time
b

formulation is employed, and this cannot be zero for arbitrary ®,. Thus our relaxation-time
assumption cannot reproduce certain important properties of the true collision matrix.
Nevertheless, we may employ it as far as possible, to evaluate the solution (2-42). This yields
results equivalent to those of Fuchs (1938) on the assumption of a perfectly rough surface,
with a plane of symmetry perpendicular to the flow direction.

2-8. A few U-processes with many N-processes
We consider now the situation when the collision matrix is given by

L,, = 0L,,+eLy,. (278)

Here L, ~ L, with L,  an N-matrix and L;, a U-matrix; d and ¢ are quantitiesindependent
of p, satisfying § > e. For an infinite medium, this situation has been considered previously in
particular cases by Leibfried & Schlémann (1954) and by Ziman (1956). They obtained a
solution by assuming that the large dL;, term determined the form of the particle distribution
as being some linear combination of the quantities X,, ¥,, Z, conserved by it, while the much
smaller ¢Ly, term determined the precise linear combination via a variational calculation;

we shall presently see how their results are modified by the presence of boundaries. We shall
21-2
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also be able to discuss in a semi-quantitative manner the effect of introducing a very large
number of N-processes into a bounded medium previously possessing a much smaller number
of U-processes, and shall see that there are two opposing effects, one tending to increase, and
the other to decrease the total particle flow. Finally, by considering the limit of our results
as ¢ — 0, it will be seen how the general solution (2-42) for U-processes tends to the corre-
sponding solution for N-processes.

We first deal with the particular integral 0, as given by equation (2:28), when L, takes
the form (2-73). Since ¢ < J, we may write

0, =cX,+c¢, Y, +c.Z,+W, (274)
where W, < ©,, and where ¢,,c,, ¢, are constants to be obtained. Substituting for ®, from
equation (2-74) into equation (2-28) gives

(63 X, 46 ST, ¢S, Z,) 1OSLW, = U, (279
g q q

q
neglecting the second-order quantity quLZqW;. We may now expand W), in terms of all the

eigenvectors W§” (1 < n < 247) with eigenvalue ¢, of the matrix Z;,, omitting X, ¥, and Z,
since we are only working in first-order perturbation. That is, we put W, = 3d,'¥{®, when
n

substituting into equation (2-75), multiplying by X,, ¥, and Z, in turn, and summing over p,
we obtain

CxIJE:LZQXi)Xq + cyszZq‘X;)Yq + Cz;lﬂququ =€ 1% U:bXIﬁ
q q q
(S X LGS LT, S L2, ~ ' SUT, 1)
g » q q
2Ly Zy Xy +e, 3Ly, Z, Y+ .31, 2,7, = ' 3U, Z, {
pq pq g ¥4 /

from which ¢,, ¢, and ¢, may be found; they are all proportional to ¢~!. The results thus
obtained are equivalent to those of Leibfried & Schlémann (1954) and Ziman (1956) found
by a variational approach. Our present technique allows us to obtain formally the first-order
correction W, since from equation (2-75)

SEL, = 07U, ele S L X o S LY, + ST, 2,)]

and the equations (2:76) are just those orthogonality conditions which must be satisfied for
this to have a solution for I¥,. In the particular case of isotropy,

2Ly, XY, =3 LY, 2, = 51, Z,X, = 0 = SUX, = SUY,
bq bq bq b b

whence ¢, = c? =0,
and ¢, =e 30,231, 2, Z,. (2:77a)
i bq
Also, W), satisfies in this case the equation
SLM, =010~ (SU4/50,2,2,) S5, 2,). (2770)
q q q

We now proceed to consider the complementary function as given by equation (2:27) for
the present situation. To deal with this, we shall use a perturbation technique, investigating
how the eigenvalues and eigenvectors of M, = do; 1L, alter as a result of the applied
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perturbation eM;, = eo,'L;,. We shall see later that we are principally interested in the
effect of this perturbation on the degenerate eigenvalue A = 0, and it is only that eigenvalue
which we shall consider now. Our general approach is that of standard first-order perturba-
tion theory, as given, for instance, by Schiff (1955) and we shall be dealing with the well-
known case of degeneracy, where several linearly independent eigenvectors exist for the
given eigenvalue, and where it is necessary to find the correct combinations to be taken when
the degeneracy is removed. A further complication is that of the existence of second-rank
eigenvectors in our problem. These never occur in perturbation theory applied to quantum
mechanics, since the operators appearing there are always Hermitian. In order to deal with
this, we shall therefore derive our perturbation theory from first principles and, in the
notation of §2-2, shall suppose that the matrix M, possesses 7" first-rank eigenvectors
2P (1 <t<T) and S second-rank eigenvectors 29 (1 <t <) corresponding to A = 0.
‘Then general first and second-rank eigenvectors, 7, and #,, respectively, will be given by

T s T
T, = glvt.%g) and #, = tglﬂt92’+t§lvt BY;
29 satisfies Y M,, 29 = ¢?, where the ¢{ are discussed in §2-2. We shall suppose that the
q

effect of the perturbation ¢, is to cause the otherwise zero eigenvalue of M, to become 2,
the corresponding eigenvector becoming 7, +%,. Then our eigenvalue equation gives

S (OMy,+eMy)) (T,4+U,) = NI, +2,); (2-78a)
q
that is, O ML, 65 M)y T+ €S Myl = AT, + A, (2-785)
q q q

We must now consider which terms in this equation may be neglected in first-order perturba-
tion theory. It will transpire later that owing to the existence of second-rank eigenvectors,
Aoc (%¢)* and (#,|7,) c (¢/8)*—in contradistinction to the usual case with no second-rank
eigenvectors where A oc ¢ and (%,/7,) «c ¢/0. Thus in our case, the terms in equation (2-785)
are respectively proportional to (¢d)?, ¢, ¢26-%, (8)?, ¢ reading from the left-hand side, and the
only one that can be neglected is the third term. We may note in passing that when there are
no second-rank eigenvectors these terms are respectively proportional to ¢, ¢, €2/d, ¢, ¢2/5, and
then both the third and last term may be neglected.

The vector %, may now be expanded in terms of the eigenvectors of M,,. Here we must
include both first- and second-rank eigenvectors, but since we deal only with first-order
perturbation, we can omit the vectors #. Thus we write

s s
%= 2 0Byt 3 w25 = Uy+ S (2:79)
%0 N N
where B, is an eigenvector of M, with eigenvalue A,. Substituting this into equation (2-785),
and omitting the third term on the left-hand side yields

s T T s
8> wA B, +d 21 wEP+e _zl v, My, B9 = 2 21 v B+ Y 0B+ 2 w7y, (2:80)
Aek0 = =l = Ack0 =l
To obtain the possible values of A, together with the corresponding v, and g, we eliminate the
terms in , by multiplying this equationin turn by ¢, 45 (1 < s < T) and 0,29 (1 < 5 < S),
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and summing over p. Then since Y0, %% B, = 20,25B,, = 0 for all s and ¢, as shown in
b b

appendix B, we obtain

T S
3 (eBy—AK) v+ > (ON,~AP) =0 (1<s< T>,]
- ‘"; (2-81)
T
3 (A AQ)ut 3 (W) n=0 (1<s<5),]
where E,= > L, 3989, K,= 0,898,
¥4

Y24

— &)t 4 (O 10] — [O1710] — 4 (@
Ny = 20,289€) = 2Ly BP97, Poy= 20,8997, A= ZL,7P%],
¥4 bq P bq
!
Qsl = Pts’ }Ist = %%%‘”gﬁ) - ; qu@g)‘@g)a Kt = 2%92@?-
q ¥4

Equations (2-81) constitute a set of 7S homogeneous linear equations for the 7'+S
quantities v, 4. In order that they should possess a solution, it is necessary that the deter-
minant of the coefficients should vanish, and this condition will give rise to 7+ S possible
values of A which may or may not be distinct. These values of A will be the perturbed eigen-
values corresponding to the initially degenerate zero eigenvalue and the values of v and x4
corresponding to each of the possible values of 4 will yield the relevant eigenvector. Since
we shall presently see that /v, oc (¢/8)* and also that %,/7, o ¢/8, it will follow that this
approach yields our eigenvector accurate to terms in (¢/8)#, but neglects those in ¢/d.

Ingeneral, many of the coefficients appearing in equation (2-81) are zero, as may be shown
by considering p and p, and by making use of the conservation properties of L, . It transpires
from a detailed examination, that for all cases, except when the matrix L, conserves energy
and number while Ly, conserves only energy, the matrix of coefficients in equation (2-81)
may be partitioned in the following way

gi):—}-.@p Q-:Me@p @Z,:+@p QI—):—@

b
By =+, 0 —AK 0 —AP
By ——B, — K ¢E —AP 0
D5 =+9, 0 —1Q SH —wv |
95— -2, —1Q eA v SH

where the elements in any one submatrix are obtained from the eigenvectors satisfying the
relations shown at the ends of the relevant row and column. On equating the determinant
of this matrix to zero, it is readily seen that there remains a 2y-fold degeneracy at A = 0,
where y = 1 or 2 according to whether only energy, or energy and number remain con-
served after the perturbation is applied. This result is, of course, expected from previous
work, since energy and number each carry with them a single independent second-rank
eigenvector. Further, it may be shown that non-zero solutions occur in pairs of 44, as we
would expect from results of appendix B. Also we may show that A oc (de)*.

Although the detailed form of equations (2:81) may be readily obtained for cases (3) and
(4) of §2-5, it was not considered necessary to give them here for general anisotropy, owing


http://rsta.royalsocietypublishing.org/

. |
/I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

BOLTZMANN EQUATION FOR A BOUNDED MEDIUM. 1 175

to their (algebraically) complicated nature. Rather, we shall confine ourselves to the iso-
tropic situation, when, for case (3), the set of equations (2-81) becomes

Afvy =0
Ay, —eg, =0
€gVs —Ahyy =0
€gV, — Ay, =0 & (2:82)
—Ahvyg + Ohp, =0
- —Ahw, +0hu, =0
where f= %:UPEPX;,, g= ﬁqung;Yq = ngqZqu, h= %op@f{})lfb = §ap@;,2>zp. (2-83)

On equating to zero the determinant of the matrix of coefficients of equation (2-82), we
obtain doubly degenerate roots at

A = = (g/h)} (de)3, (2-84)
apart from the expected doubly degenerate root at A = 0. Substituting from equation (2-84)
into equation (2-82) yields

V=V =0, fy =Ky, fy = Ky,
where k= +(g/h)t (¢/)} (2-85)
and v, v, are arbitrary; the + sign in x corresponds to that in A. Thus we have
(a) A=+ (g/h)¥ (d¢)*: two independent eigenvectors

Y, +«k2P, Z,+«2P; (2-864)
(5) A =—(g/h)* (%)*: two independent eigenvectors
Y,—«2y, Z,—k2p. (2-860)

Results identical with (a) and (b) are obtained for the isotropic situation in case (45) of
§2-5. We note in passing that within the framework of a relaxation-time approximation, it
can be shown that A corresponds to a mean free path which is the geometrical mean of the
mean free paths due to dL;, and ¢L;, acting separately.

We may now obtain formally in the isotropic case the remaining part of the perturbed
eigenvector %, as given by equation (2:79). By means of equations (2-784) and (2-80) it may
be shown that %, satisfies the equation

%L},q%; = (¢/8) v[(g/h) ap@p—ngq,@q], (2-87)

where #, =Y, or Z,, and 2, and v correspond. We notice that the right-hand side of
equation (2-87) is orthogonal to ¥, and Z,, as it must be for the equation to possess a solution
also that %, o ¢/6 and that #; = —%,,.

We now proceed to investigate the form of the general solution (2:42) in the isotropic
situation; our conclusions, suitably modified, will apply also to the case of anisotropy. It
follows from equations (2-74), (2:77), (2-86), and the discussion in §2-5 that this general
solution now takes the form

D,(%) = 24,(Bys e Asx— By eths®) 4-m/{[¥), + (¢/0) 7] (e +e* M)
-+ K@;l)(e—kxﬁe+/\x>}+7n”{[zp + (6/5) a//‘})Z)] (eh/\x_,__e+/\x)

FRDP(e et} 4 SU, 25,2, 2) 2,071 (2:88)
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Here, the first summation is over all s, excepting A, = 0 or A. m’ and m” are arbitrary constants,
while 7, = (d/¢) %}, and #, = §W,. It follows from equation (2-43) that the boundary
conditions now take the form

S, (%B,, et — By chee) 4 m{[* T, 4 (6f8) % 7] (e ¢ )
+K*@}}>(e+"“He"‘“)}qtm”{[*Zp—l— (6/3) */f/‘f)] (e+/\a _|_e—/\a) _|_K*@A(02)(e+/\a_e~/\a)}
=—e\(JU,Z,/)3L,,2,Z,) *Z,— 0" ¥, (2:89)
b bq

which equations are to be solved for [, m" amd m". Now, since § > ¢, the first term on the

right-hand side containing *Z, is much greater than the second term, and thus the value of

m”, being the coeflicient of *Z, on the left-hand side, is much greater than the other arbitrary

constants. Hence we may put m” = m+1[’, where

m = ﬁ[(gUpr)/e(%L}iqZqu) (erdefe )], (2:90)

and where [’ is of the order of magnitude of the other arbitrary constants. With the use of
equations (2-83) and (2-85), this therefore allows equation (2:88) to be written

Dy (x) = SL(By e B ) e (SU,Z, /51,2, 7,) (1 —cosh AxsechAa) Z,

2 ]
bq

+8_1{Wp“(§%zp/%l‘ngpzq> (cosh Axsech Aa) 7"},  (2-91)

+(8) (ST, Z,) (34, Z, Z,) (S0,Z,9P)H] (sinh Ax sech da) 2
b ¥4

where the first summation now includes A, = A and where the /, are now all of the same order
of magnitude; the corresponding boundary conditions may be immediately written down.

In order to consider the general properties of the solution (2-91) we introduce the mean
free paths for (a) 0L’ acting alone, () eL” acting alone, and (¢) dL’ and ¢L" acting together.
We shall call these #',%" and .Z, respectively, where

L'~ <P and Z = (g’g”)%,\,/{—l

as mentioned earlier. The general nature of the solution (2-91) will depend on the ratio of
a to these three mean free paths. Let us consider first the situation when a < %, that is
Ada < 1. Then we can expand all exponential terms in equation (2:91) (other than in the
first summation) as a power series in A and, retaining only the first two non-zero terms,
we obtain '

D,(x) = LBy e By et +1(SU,Z, (50,97, (&) [1 - (2)12) (502 )
s ¥4 ¥4
+.. 02,4 (SU,Z, S 0,22Z,) x[1— (2/6) (3a2—2) + ..] 72
b 4 ’
O, 1(SU,Z, S L, Z,Z,) (a2 — ) VP 1) (2:92)
b bq

Here we have substituted for A from equations (2-83) and (2-84) in the first term of the
expansions, and have introduced the vector #, which we see from equations (2-77) and

(2-87) satisfies ng Y %—(EU;;Z;)/%%@}?)ZIJ) 7, 2P (2-93)

Pq “q

If we now let ¢ > 0, A = 0 and it is readily seen that equation (2-92) becomes the result
obtained in § 2-4 and § 2-5 for the situation when only N-processes occur. The equation (2-92)
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gives the first-order corrections to be applied to this result when Aa < 1, but is non-zero.
This may have relevance to the effect of helium-3 impurities in decreasing the phonon heat
flow in helium-4; it is hoped to follow up this point in later work.

We now consider the situation when ¢ > #’. Then it may be shown, as in the discussion
at the end of §2-5, that when sufficiently distant from the boundaries, the first, third and
fourth terms in equation (2-91) may be neglected as compared with the term in Z,. From
equation (2-52) we see that the total particle flow along the z direction in this case is given by

AN) = (1/4%) V(3T Z,) (30'Z,) (ST;,Z,7,) " al1 — (ha) " tanhdal.  (2:94)

Thus as far as variation with respect to « is concerned, A, oc a[1 — (da) ! tanh Aa], and we
would hope to observe this effect by experiments on the flow with 0-1 < Aa < 10. Such
work could give a direct experimental value for A; we might think of trying it with im-
purities in liquid helium, or with impurities and Umklapp processes in dielectrics at low
temperatures. Of course, as A - 0, the result (2-94) tends to the usual result for ‘viscous’
flow, with A, oc a3.
We now consider the situation when a > % and therefore Aa > 1. Then from the previous
discussion and equation (2:91) we see that when sufficiently distant from either boundary
O, (x) = ¢! (%%Zﬁ/quququ) (1—eM)Z, (2-95)
where x'is the distance from the boundary. Thus when we are well away from the boundaries,
®,(x) is constant at the value it would have in an infinite medium, while when approaching
the boundaries its decrease to zero is accurately characterized (at more than a few #’) by
the relaxation length 1-1. We note from the result (2-94) that A, is now proportional to
(a—2A71). ‘
Finally, we compare these results with those existing in the absence of N-processes. In the
latter case we shall have L,, = eL;, (see equation (2:73)), and our general solution @ (x)

will be given by @) (x) = SU(B), e~Nx— By e*) 1671 @), (2-96)

where dashed quantities refer to L, and @), satisfies %qu 0, = U,. Now, it may be shown

by the usual variational principle for an infinite medium (Kohler 1949 4) that ®, > ©,, where
0, [=(3U,2,/3L;,Z,Z,) Z,] is the corresponding solution for an infinite medium when
b bq

L,, = 0L, +eL;,. Also, as weleave the boundary, the increase to the value ®), is characterized
by a relaxation length ~ (1/1;) > (1/A). Thus in general terms, we may conclude that
@, > @, when we are at a distance from the boundary greater than a few .#’, but that as we
leave the boundary the value of @, increases to its maximum value much quicker than does
that of @,. Hence, if we introduce N-processes into a bounded medium previously possessing
only a few U-processes, the effect of the former will be, first, to decrease the flow due to the
decrease in ®,, and secondly, to increase it due to the increase in A. As the number of
N-processes increases, the value of ®, will tend to a definite lower limit, while A becomes
continually larger, being proportional to 8*. Whether or not the limiting total flow will have
increased or decreased as compared with the initial total flow will depend on the ratio of
atoZ’.

22 Vor. 253. A,
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criticism.

APPENDIX A

Suppose we are dealing with collisions, represented by a collision term L[®] in the
Boltzmann equation (1-5), in which some physical property I of the particles is conserved ;
for the situations we are considering I" could be the number, energy or the three independent
components of the wave number of the particle. Then if §(x) is the Dirac §-function, we have

L= Qd([I']), (A1)
where @ is an integral operator, since this expression for L is zero if I'is not conserved in
collisions. It follows that )

LT = Q4([I]) [T] =0, (A2)

since the d-function is non-zero only when [I'] is zero. Hence we see that I'is a solution of
the homogeneous equation L[ @] = 0; alternatively we may say that I'is an eigenfunction of
the operator L, corresponding to an eigenvalue of zero.

Since I'is conserved in collisions, we would expect the total rate of change of I" due to
collisions to be zero. We can readily see this to be so from the above analysis, since the total
rate of change of I'is proportional to [T'L[®] dk, and hence from the remarks at the end of
§1-1 is proportional to [[I'] L[®] dk for any displacement @ from the equilibrium distribu-
tion. We have

[Ir1Li0)ak — [Qrejar))rydk = o (A3)

from equation (A1), as required. We may note that this important physical result is not
given by a relaxation-time approximation, since for it to be true we would require that
[w®r='T'dk = 0, which certainly cannot be satisfied by a fixed 7 for arbitrary ®.

ArpenDIX B
- We prove here the following properties concerning the eigenvalues and eigenvectors of
the matrix M, defined in equation (2-8).
(1) The eigenvalues A are all real.
(2) (a) IfA == 0, no eigenvectors of rank greater than unity exist.
(b) IfA = 0, no eigenvectors of rank greater than two exist.
(3) Eigenvectors x, and ¢, corresponding to different eigenvalues are orthogonal in the

sense that
%%Xp% = 0. (B1)

(4) (a) Corresponding to any non-zero eigenvalue A with an eigenvector y,, there always
exists an eigenvalue —A with eigenvector ¥, = y;.
(b) IfA = 0, then all eigenvectors x, of both first and second rank may be chosen to
satisfy either x; = +x, or x; = —X,-
(5) If L,, = L,; (p =+ q), then for any eigenvalue A and corresponding eigenvector y,,

Xp(Myy—2) = x5(M,, +-A). (B2)
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Proof of (1). Since the matrix M, is not Hermitian (although L, is), we cannot invoke any
general principle concerning the reality of the eigenvalues, but must prove the result from
first principles. If y, is the eigenvector corresponding to eigenvalue A, we have

ngqu = A0, Xy
whence A;%X;;X; = %ququj, (B3)
where y¥ is the complex conjugate of x,. Now, since 7, and y,x} are real, 37,y,x} is also
real, while the discussion at the end of §1-1 shows that sz;bq X X5 1s real, afld less than or
q

equal to zero. If it is less than zero, we can then deduce from equation (B 3) that A is real.
This cannot be done if %qu X, X§ = 0, but the discussion in §1-1 shows this to be possible

only if 3L, x, = 0, and this, of course, means that A = 0. Thus A is always real, and so, of
q

course, are the eigenvectors y,,.
Proof of (24). We suppose that corresponding to a non-zero eigenvalue A there exists a set
of T linearly independent first-rank eigenvectors By (1 <<t < T). Then the general first-

T
rank eigenvector corresponding to this eigenvalue is > »,BY, where the v, are arbitrary
i=1

constants. From the discussion in §2-2 we see that the existence of a second-rank eigen-
vector depends on the existence of a solution £, to the equation

Sy, = 5 By (B4)
with v, not all zero. Such a solution will exist if
> é b, B0y, = 0 (B5)
for all 5, where 5, is a solution of the homogeneous equation, adjoint to (B4):
%:Jqpijq e %:Jq“leqiyq—/lﬂp =0 (B6)

since L,, = L,,. Now, equation (B 6) may be written
M, (03'n,) = Aoy "1y, (B7)
q

which shows that o517, is an eigenvector of M, , and may thus equal any of the BY?; that is,
¥4 771; g bq Y q y b

79 = a,BP. The fulfilment of the condition (B 5) may therefore be seen to depend on the

existence of non-zero solutions for v, in the set of 7" linear equations

T
2 Ky, =0, (B8)
=1

where K, = X0,BY BY. (B9)

b

A necessary and sufficient condition for this to be the case is that |K| = 0, and we now
proceed to investigate the possibility of this being satisfied.
From equation (B9) we have

K, = A30,ByBY — Sg,M, BOBY — S L, BYBY. (B10)
b bq bq

22-2
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Also, making use of the fact shown above, that the B, are real, we have from the negative
definite character of L, that since A = 0,

pZqu(Zﬂs BY @P;Bg)) <0 (B11)
q s

for any real p,. Thus, from equation (B 10),
A2 K psp, < 0. (B12)
st

But a necessary condition for the inequality (B 12) to hold for all p, is that A |[K,| < 0 (Ferrar
1951), which shows that |K,| = 0, and hence that no eigenvectors of rank greater than unity
exist.

Proof of (2b). Anintegral part of the reasoning in the above proof was that A == 0. If A = 0,
second-rank eigenvectors may exist, but we now proceed to show that eigenvectors of rank
greater than two cannot exist. Suppose that corresponding to eigenvalue zero there exists
a set of T linearly independent first-rank eigenvectors #% (1 < ¢ < T') and a set of § linearly
independent second-rank eigenvectors 2§ (1 < s < §) which satisfy the equation

T

L, 29 =0, 3 vOBY. (B13)
q =1

This equation will be soluble for § independent sets of v (1 < s < §) obtained from equa-

tion (B 8), and giving rise to our § independent 2,’s. It follows that a general second-rank

eigenvector Z, is given by

N T
%= t=21 G tgl G

for arbitrary 4, and v, and the existence of a third-rank eigenvector 2/, depends on the
existence of a solution to the equation

S T
Myt = 3 2P+ 3 AP (B14)
q t=1 t=1

with non-zero g, It follows from the discussion of orthogonality conditions given in the
proofof (2a) that the existence of such a solution to equation (B 14) depends on the existence
of solutions for v, in the set of T linear equations

T S
tgl Ky, = — tgl ﬂt[pZ%@}?@fff)] (B15)

(where K, is defined in equation (B 9)), with 4 not being identically zero. Now in order that
equation (B 15) should possess solutions for v, it is necessary that the right-hand side should
be orthogonal to all solutions of the adjoint homogeneous equation, which now takes the
form (B 8) since K, = K,,. This latter equation is soluble for the S sets of v, mentioned earlier,
and thus the fulfilment of this orthogonality condition reduces to the existence of solutions for
4, in the set of S linear equations

S
t:ZIHrtlul =0, (B16)

T -
where H,= gc@gwp[g} me;,»] = 39§0,¢p = 31,9997, (B17)
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from equation (B 13). It now follows from the negative definite character of L, , together

with 3L, 99 =+ 0, that 3 H,p,p, < 0 for all p, (see the latter part of the proof of (24)), and
q rt

hence that |H,| 4 0. Thus no solutions for 4 exist to equation (B 16) and so there are no
third-rank eigenvectors.

Proof of (3). We first prove equation (B 1) for the case where y, and ¥, are both first-rank
eigenvectors. We then have

;Mﬁqxq = [Xp and ;Almzﬁq = /I;ﬁp, (B18)

where xz and A are the corresponding eigenvalues. Since L,, = ¢, M, , these equations yield

K20 XVp = ZlpaXa¥p (B194a)

and A%:crpxp ¥, = %qu VoXp = %quXq ¥y (B195)
use being made of L,, = I,,. Subtraction of the equations (B 19) then gives

(=2)20,1,¥, = 0 (B20)

whence we obtain equation (B 1) since # = A.

If §, is a second-rank eigenvector corresponding to eigenvalue zero, it may be shown by
a proof similar to that given above, that the orthogonality relation (B 1) still holds.

Proof of (4a). Since y, is an eigenvector corresponding to an eigenvalue A, we have

%%qu = AXP (BQI)
Thus > Msaxz = Axpe (B22)
q
But My = 05 Ly = — o, 'L, = —M,,, (B23)
whence, from equation (B 22),
Mg = — A (B24)
q

Hence ¢, = y; is an eigenvector with eigenvalue —A.
Proof of (4b). If x, is a first-rank eigenvector with eigenvalue zero we have

SL,,x, = 0. (B25)
q

Now, since L,, is invariant to the inversion group, where this consists of replacing p by p, it
follows from the eigenvalue equation (B25) that y, can be chosen to transform as some
representation of this group; that is y; = +x, or x; = —x,-

In the case of second-rank eigenvectors corresponding to eigenvalue zero, it may be
shown by a detailed consideration of the possible solutions of equation (B 8) that the solutions
of equation (B13) can be chosen to satisfy either 7; = +9, or 2; = —9,.

Proof of (5). Since y, is an eigenvector with eigenvalue A we have

M,y Xp+q§pMpq Xy = MXp- (B26)

Thus %ﬁﬁ*‘%ﬁ%ﬂq = Axp- (B27)
But since Ly, =L, (qg+0p),

M, = 05'L;, = —o, L, = —M,, (q+p), (B 28)
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and from equation (B23), M;; = —M,,. Hence, equation (B27) becomes
Mypxs= 2 My ty = 25 (B29)
Adding this to equation (B 26) gives
Myp(Xp—2x5) = A%y + X5)> (B 30)

from which equation (B 2) follows. We may note that if L = 0, x; = -y,

ArreEnDIX C

We prove here that the set of equations (2-11) (excepting # = 0) and (2:30) (&) have no
solution if @ = 1 and () always have a solution if ¢ = 2.
(a) If @ = 1, we are concerned with finding solutions to

SM,, AV =0, (C1a)
q

SM, A9 — 71U, — AP, (C1b)
q

T
Equation (C1la) has the solution AP = 3 1,49 (see equation (2-12)), where the S inde-
=1

pendent sets of 1§ (1 < r < §), considered in equation (B 13), are obtained from the solution
ofequation (B8). We know from equation (B 7) and previous discussions thatequation (C 1)
will only be soluble if the orthogonality condition

Za B0, U, —AP] =0 (C2a)

is satisfied. Making use of equation (B 9) we readily see that the condition (C 24) becomes
| éKS,Vl ey (CG2b)

where G, = %U;%’g’. (C3)

Thus our equations (C 1) will only possess a solution if equation (G 25) possesses a solution

for v,. Such a solution will exist if G, is orthogonal to all solutions of the homogeneous

equation (B 8) (since K, = K,); that is, if the § equations

Z V(r)G EU z V(r)g?(s)] :ZU;(g(;) = 0 (C 4)
b

s=1

are satisfied ,where ¢ is defined in equation (2:19). Now, it can be shown that the €}’ may
be chosen to satisfy either ¢’ = +&} or 9 = —¢}. For the former, equation (C4) is
automatically satisfied, but for the latter, which will necessarily exist when £, is an N-matrix,
equation (C 4) will not be satisfied, and hence no solutions of equations (C 1) exist.

(b) If Q = 2, we are concerned with finding solutions to

SM,, 49 = 0, (C54)
SM,, 4P = —247, (C5b)

SMy, A = o7 Uy AP (C5¢)
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Equation (C 54) has the solution
N
AP~ 3 e, (o)

while, from equation (G55), we see that A} is a general second-rank eigenvector, being
given by T s
Ap = 3@+ 3y ()
=1 t=1
(see equation (2-21)). Equation (C5¢) will only be soluble if the orthogonality condition
(G 2a) is satisfied, and this now becomes

T N
2 Koy =G, 3 ul 30,7031, (C3)

For this to possess a solution for v,, we require the right-hand side to be orthogonal to all the
19 satisfying equation (B 8). This condition may be written

s T
glhrm”z == sZ::le W = %%(gfbﬁ’ (G9)

where H, is defined in equation (B17). Itis proved there that |[H,| == 0, and hence equa-
tion (C9) always possesses a unique solution for g, which combined with the v, then
obtainable from equation (C8), yields a solution of equations (C 5) giving our required
particular integral. The solution of equation (C8) will be arbitrary to the extent of v}
satisfying equation (B8). This, however, will just duplicate part of the complementary
function, as also will the arbitrary #9 arising in the solution of equation (C 5¢) for 4.

ArpENDIX D

We prove here that in the usual formulation of the Boltzmann equation, it is valid to use
velocity as the ‘motion’ variable for gas molecules, but that for electrons, wave number
must be employed instead of velocity, unless the energy is a quadratic function of the former.
To show this, let us consider a particle state to be specified by a position variable q and
a ‘motion’ variable r; we shall consider presently precisely what physical quantity r can be.
Then if we represent q and r by a single six-dimensional vector s in g —r space, we give the
number of particles in a volume ds as (1/87%) f(s) ds. We now obtain the Boltzmann
equation via the physical requirement that the rate of change of the number of particles
inside any volume ¥ of phase space due to collisions, should equal the rate of flow of particles
out of V. If d4 is an element of the surface of V, this yields

fV(af/at)cds zfyfé.dA :deivs (f8)ds, (D1)

where (df/dt), is the rate of change of f due to collisions, and the dot notation implies
differentiation with respect to time. Thus we obtain the Boltzmann equation in the form
(0f]0t), = divy (f8) = q.grad, f+1.grad, f+f[div, q +div, I], (D2)
where we now specify q and r separately. Owing to an inadequate analysis of the situation,
many derivations of the Boltzmann equation do not yield the final term 7 in square brackets
of equation (D 2). However, it may be readily shown that for classical particles obeying
Hamilton’s equations, for example gas molecules, this term 7" is zero if r is either the
momentum p or the velocity v.
Considering now the case of quantum particles, for example, electrons, r may represent
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either the wave number k or the velocity v (=%~ grad, £, where E is the particle energy).
Ifr = Kk, it follows immediately that 7"is zero, since the number of particle states in a volume
ds (=dqdk) of q —r space is proportional to ds, and is independent of the time. Ifr = v,
on the other hand, 7" = (d4;/9v;) ;, and this may now be transformed to yield
d1n [0?E[dK, 0Kk |
ik, ’

where |M, | is the determinant of the matrix M, . Hence we see that for this case 7" will be
non-zero, unless £ is a quadratic function of k. Thus the usual formulation of the Boltzmann
equation, omitting the term 7, will in general be incorrect for electrons in a periodic
potential if v is the ‘motion’ variable.

T =k, (D 3)
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